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Introduction

The Linear Regression Problem:
Setup: Let 3* € RP. For some measurement matrix X € R"*P  and
noise vector W € R", we observe n noisy linear samples of 5*, Y € R",
given by

Y (= XB* +W.

Goal: Given (Y, X), recover 5*.

(Notation: We call p the number of features and n the number of
samples.)
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Main Question:

Question: “What is the minimum n (numbers of samples) we need to
recover 3* in some general Linear Regression setting?”
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Main Question:

Question: “What is the minimum n (numbers of samples) we need to
recover 3* in some general Linear Regression setting?”

An immediate answer under full generality: at least p.
Reason: Even if W = 0, we have Y = X%, a linear system with p

unknowns and n equations!
To solve it, we need at least p equations, i.e. n > p.
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Problem: A High Dimensional Reality

In many real-life applications (e.g. natural language processing,
computational biology, computer vision, image processing etc) of Linear
Regression we observe much more features than samples (i.e. n < p.)
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Problem: A High Dimensional Reality

In many real-life applications (e.g. natural language processing,
computational biology, computer vision, image processing etc) of Linear
Regression we observe much more features than samples (i.e. n < p.)

Question: Are we doomed to not use all the features or can we handle
such a situation?
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Put Structural Assumptions on 5*

(1) Sparsity assumption; we assume 3 is zero for all i € {1,2,...,p}
except a subset of the indices of cardinality k < p.
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(1) Sparsity assumption; we assume 3 is zero for all i € {1,2,...,p}
except a subset of the indices of cardinality k < p.

Appears a lot

> in applications; e.g. in signal and image coding [Mallat and Zhang '93].
> in theory; e.g. in Compressed Sensing ([Candes, Tao '06], [Donoho
'06]).

(2) We assume binary 3's, i.e. we assume 3* € {0, 1}P.

Less known in the literature, but

> Discrete structure = easier to analyze.

» Keeps the challenge of support recovery (a highly nontrivial task)

» Best known information theoretic lower bound is much smaller than
the best known algorithmic upper bound.
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Assumptions on X, W

We assume that

(1) X;j is i.i.d. standard normal N(0,1) for alli=1,2,...,n and
i=12....p

(2) W; is i.i.d. normal N(0,02) fori=1,2,...,n, where 02 = o(k).
(3) X, W are independent.

Classic in literature ([Candes, Tao '06], [Donoho '06],[Wainwright '09])
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The New Model

Setup: Let 5* € {0, 1}P be a binary k-sparse vector. For

e X € R"*P consisting of entries i.i.d N(0, 1) random variables

* W € R" consisting of entries i.i.d. N(0, o) random variables with
02 = o(k)

we get n noisy linear samples of 5%, Y € R", given by,

Y 1= XB* + W.
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The New Model

Setup: Let 5* € {0, 1}P be a binary k-sparse vector. For

e X € R"*P consisting of entries i.i.d N(0, 1) random variables

* W € R" consisting of entries i.i.d. N(0, o) random variables with
02 = o(k)

we get n noisy linear samples of 5%, Y € R", given by,

Y 1= XB* + W.

Goal: Given (Y, X), recover 5* with the minimum number of samples.
The recovery should happen with probability tending to 1 as the problem
parameters tend to infinity (w.h.p.).
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(Very-Brief) Literature Review

e Upper bounds ([Candes, Tao '06],[Donoho '09],[Wainwright '09])
If
n > 2klogp

LASSO and other efficient algorithms recover 8* w.h.p. .
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(Very-Brief) Literature Review

e Upper bounds ([Candes, Tao '06],[Donoho '09],[Wainwright '09])
If
n > 2klogp

LASSO and other efficient algorithms recover 8* w.h.p. .
® Lower bounds ([Wang et al '10])

2k
Iog(%—!—l)
of 8* which succeeds w.h.p.

If n < n*:= log p, then there is no recovery mechanism
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The Gap n* < n < 2klog p/Main Results

The next natural question:
Is it possible to recover 5* for n with

n* < n < 2klogp?

If yes, is there an efficient way to make this recovery?
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The Gap n* < n < 2klog p/Main Results

The next natural question:
Is it possible to recover 5* for n with

n* < n < 2klogp?

If yes, is there an efficient way to make this recovery?

Main Results: We answer yes to the first question, and conjecture (based
on geometrical arguments) that the answer is no to the second.
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Maximum Likelihood Estimator

It has a simple-to-state form: the MLE 3 is the optimal solution of

(®2) min 1Y =X3]l2.

Bef013P, 3P, Bi=k
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Maximum Likelihood Estimator- “All or Nothing” Theorem

Definition
For 8 € {0, 1}P, k-sparse we define

Overlap(p) := |Support(8*) N Support(3)|.
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Maximum Likelihood Estimator- “All or Nothing” Theorem

Definition
For 8 € {0, 1}P, k-sparse we define

Overlap(p) := |Support(8*) N Support(3)|.

Theorem (“All or nothing”)

(Gamarnik,Z. 2016) Set n* := g—t log p and let € > 0 be arbitrary.
Iog(?—i—l)

® /fn<(1-€)n*, then w.h.p. %Overlap(A) — 0, asn,p, k — +oo.
® /fn> (1+¢€)n*, then w.h.p. %Overlap(ﬁ) — 1, asn,p, k= +o0.
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Maximum Likelihood Estimator

Comments:

(1) Information exists when n > (1 + €)n*!
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Maximum Likelihood Estimator

Comments:

(1) Information exists when n > (1 + €)n*!
(2) A sharp phase transition!
(3) A challenging application of the second moment method.
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Algorithmic Hardness (7)

Question: Why no efficient algorithm is known when n* < n < 2klogp
and many are when n > 2k log p?
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Algorithmic Hardness (7)

Question: Why no efficient algorithm is known when n* < n < 2klogp
and many are when n > 2k log p?

A wusual picture in the analysis of randoms CSPs. Theory of random CSPs
suggests that a usual reason is an “important change in the geometry

of the space of solutions” between the two regimes.[Achlioptas et al,
2008].

Usually when such a property holds no efficient algorithm exists and when
it ceases, even “local” algorithms work (remember yesterday's talk).

Various names: shattering property, overlap gap property.
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The Overlap Gap Property (OGP) for Linear Regression

The OGP (informally): The set of ’s with “small” ||Y = Xf||2
“shatters” in two components, one where 3 have low overlap with the
ground truth 8* and one where they have high overlap with 5*.

Xp

/ : =
low overlap oY AB i

\ high overlap 1
e - g “

Figure: The OGP around Y
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The Overlap Gap Property for Linear Regression-definition

Forr >0, set Sy := {8 € {0,1}P : [|8]]o = k, n™2||Y = X8| < r}.

Definition (The Overlap Gap Property)

Let r > 0 and 0 < (3 < (o < 1. We say that the high-dimensional linear
regression problem defined by (X, W, *) satisfies the Overlap Gap
Property with parameters (r, (1, () if the following holds.

(a) For every g €Sy,

%Overlap(ﬂ) < (1 or %Overlap(ﬁ) > (.

(b) Both the sets

Ssn{B: %Overlap(ﬁ) <CtandSrn{B: %Overlap(,B) > (o}

are non-empty.
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The Overlap Gap Property- The result

Theorem
There exists C > ¢ > 0 such that,
e /fn* < n < cklogp then w.h.p. OGP holds for some r = r, and
0<1 <<l
® /fn > Cklogp then w.h.p. OGP does not hold for any choice of
r=reand 0 < (1 < (o < 1.(post-COLT)
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The Overlap Gap Property- The result

Theorem
There exists C > ¢ > 0 such that,

® /fn* <n < cklogp then w.h.p. OGP holds for some r = r, and
0< (1 <<l

® /fn > Cklogp then w.h.p. OGP does not hold for any choice of
r=reand 0 < (1 < (o < 1.(post-COLT)

An easy corollary: if n < cklogp then any “local-greedy” algorithm will
fail w.h.p.

Also, if n > Cklog p then the simplest “local-greedy” works!(post-COLT)
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Summary

(1) We show that when n > (1 + €)n* for some € > 0, information
exists to recover [3*.

D. Gamarnik, I. Zadik (MIT) Sparse High Dimensional Regression 17 /22



Summary

(1) We show that when n > (1 + €)n* for some € > 0, information
exists to recover [3*.

(2) The performance of the optimal estimator M.L.E. changes suddenly
w.h.p. when the number of samples crosses the value n*.

D. Gamarnik, I. Zadik (MIT) Sparse High Dimensional Regression 17 /22



Summary

(1) We show that when n > (1 + €)n* for some € > 0, information
exists to recover [3*.

(2) The performance of the optimal estimator M.L.E. changes suddenly
w.h.p. when the number of samples crosses the value n*.

(3) We conjecture that the regime n* < n < 2klog p is algorithmically
hard and we prove a geometrical phase transition to provide
support for it.
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Open Problems

e Can it be proven that assuming n < (1—¢)n*, there is no information
to recover any fraction of the support of 5*?

e Can we prove/provide more support that n* < n < 2klogp is
algorithmically hard? For example, can we find a reduction from the
planted clique like in sparse PCA [Berthet, Rigollet '13]?

D. Gamarnik, I. Zadik (MIT) Sparse High Dimensional Regression 18 /22



Open Problems

e Can it be proven that assuming n < (1—¢)n*, there is no information
to recover any fraction of the support of 5*?

e Can we prove/provide more support that n* < n < 2klogp is
algorithmically hard? For example, can we find a reduction from the
planted clique like in sparse PCA [Berthet, Rigollet '13]?

Thank you!!
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Proof ldeas-1
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Proof ldeas-1

e Forany ¢ €{0,1,...., k} set

p
Ty ={8€{0,1}°|>_ B, =k, Overlap(8) = ¢}.

i=1
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Proof ldeas-1

e Forany ¢ €{0,1,...., k} set

p
Ty ={8€{0,1}°|>_ B, =k, Overlap(8) = ¢}.

i=1

® Set dy = mingeT, (|[Y = XB|[2) . Then d = ming—g 1, K ds-
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Proof ldeas-2

® \We show that w.h.p. forall £=0,1,..., k,

dp~1/2k(1- é) + 02 exp <_k(1—)|ogp> .

S [KIs
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Proof ldeas-2

® We show that w.h.p. forall £=0,1,...,Kk,

k(1- )1
dy ~ 2k(1—i)+02exp<—(|r‘])ogp>

e So, wh.p. forall£=0,1,..., k,

¢
de~fl1-7],

for f (o) := v/2ak + o2 exp ( Ing) ,a € [0,1]
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Proof ldeas-2

® We show that w.h.p. forall £=0,1,...,Kk,

k(1-£)1
i1 )+ g (OB

e So, wh.p. forall£=0,1,..., k,

¢
de~fl1-7],

for f (o) := v/2ak + o2 exp (—a%) ,a € [0,1]

® So w.h.p.
: ¢ :
d~ min fll-—=]~ min f(a).
0=0,1,... .k k a€[0,1]
Sparse High Dimensional Regression
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Proof ldeas-3

e f is strictly log-concave, so d ~ min (f(0), f(1)).
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Proof ldeas-3

e f is strictly log-concave, so d ~ min (f(0), f(1)).

e But

£(0) > (1) & Vo2 > 2k + 02 exp <_kl<;g p)

2k log p.
)

&n> ———
Iog(%%—%l
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Proof ldeas-3

e f is strictly log-concave, so d ~ min (f(0), f(1)).

e But

£(0) > (1) & Vo2 > 2k + 02 exp <_kl<;g p)

2k
—————logp.
log <% + 1)

& n>

® So the optimization problem changes behavior exactly at
2k
*

n“i=——
log <(27—|§+1>

log p.
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Proof ldeas-3

e f is strictly log-concave, so d ~ min (f(0), f(1)).

e But

£(0) > f(1) & Vo2 > V/2k + 02 exp< klogp>

2k log p.
)

&n> ———
Iog(%—i—l

® So the optimization problem changes behavior exactly at
2k
* L _

n e —
log (3—5%—1)

log p.

® Therefore n > n* iff f is minimized at 1 iff dy being minimized at 0,
which happens iff the optimal vector has full common support with
6*
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Proof ldeas-4

Two pictures behind the phase transition
(p =10% k = 10,02 = 1,n* = 136);

15 2
-
@ b \ (o) o
distance || " distance
from [ N from
Y e X Y
| 3
0 MIST. OVERLAP SIZE o 1 0 MIST. OVERLAP SIZE o 1

Figure: The behavior of f for Figure: The behavior of f for
n =40 < n*. n* < n=150.

Comment: o :=1- é so & = 1 means no recovery and o = 0 full
recovery.
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