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Introduction

The Linear Regression Problem:

Setup: Let β∗ ∈ Rp. For some measurement matrix X ∈ Rn×p , and
noise vector W ∈ Rn, we observe n noisy linear samples of β∗, Y ∈ Rn,
given by

Y := Xβ∗ + W.

.

Goal: Given (Y, X), recover β∗.

(Notation: We call p the number of features and n the number of
samples.)
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Main Question:

Question:“What is the minimum n (numbers of samples) we need to
recover β∗ in some general Linear Regression setting?”

An immediate answer under full generality: at least p.

Reason: Even if W = 0, we have Y = Xβ∗, a linear system with p
unknowns and n equations!
To solve it, we need at least p equations, i.e. n ≥ p.
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Problem: A High Dimensional Reality

In many real-life applications (e.g. natural language processing,
computational biology, computer vision, image processing etc) of Linear
Regression we observe much more features than samples (i.e. n� p.)

Question: Are we doomed to not use all the features or can we handle
such a situation?
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Put Structural Assumptions on β∗

(1) Sparsity assumption; we assume β∗i is zero for all i ∈ {1, 2, . . . , p}
except a subset of the indices of cardinality k� p.

Appears a lot
I in applications; e.g. in signal and image coding [Mallat and Zhang ’93].
I in theory; e.g. in Compressed Sensing ([Candes, Tao ’06], [Donoho

’06]).

(2) We assume binary β∗i ’s, i.e. we assume β∗ ∈ {0, 1}p.

Less known in the literature, but

I Discrete structure ⇒ easier to analyze.
I Keeps the challenge of support recovery (a highly nontrivial task)
I Best known information theoretic lower bound is much smaller than

the best known algorithmic upper bound.
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Assumptions on X, W

We assume that

(1) Xi,j is i.i.d. standard normal N(0, 1) for all i = 1, 2, . . . , n and
j = 1, 2, . . . , p.

(2) Wi is i.i.d. normal N(0,σ2) for i = 1, 2, . . . , n, where σ2 = o(k).

(3) X, W are independent.

Classic in literature ([Candes, Tao ’06], [Donoho ’06],[Wainwright ’09])
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The New Model

Setup: Let β∗ ∈ {0, 1}p be a binary k-sparse vector. For

• X ∈ Rn×p consisting of entries i.i.d N(0, 1) random variables

• W ∈ Rn consisting of entries i.i.d. N(0,σ2) random variables with
σ2 = o(k)

we get n noisy linear samples of β∗, Y ∈ Rn, given by,

Y := Xβ∗ + W.

Goal: Given (Y, X), recover β∗ with the minimum number of samples.
The recovery should happen with probability tending to 1 as the problem
parameters tend to infinity (w.h.p.).
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(Very-Brief) Literature Review

• Upper bounds ([Candes, Tao ’06],[Donoho ’09],[Wainwright ’09])
If

n > 2k log p

LASSO and other efficient algorithms recover β∗ w.h.p. .

• Lower bounds ([Wang et al ’10])

If n < n∗ := 2k

log
(

2k
σ2

+1
) log p, then there is no recovery mechanism

of β∗ which succeeds w.h.p.
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The Gap n∗ < n < 2k log p/Main Results

The next natural question:
Is it possible to recover β∗ for n with

n∗ < n < 2k log p?

If yes, is there an efficient way to make this recovery?

Main Results: We answer yes to the first question, and conjecture (based
on geometrical arguments) that the answer is no to the second.
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Maximum Likelihood Estimator

It has a simple-to-state form: the MLE β̂ is the optimal solution of

(Φ2) : min
β∈{0,1}p,

∑p
i=1 βi=k

||Y – Xβ||2.
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Maximum Likelihood Estimator-“All or Nothing” Theorem

Definition

For β ∈ {0, 1}p, k-sparse we define

Overlap(β) := |Support(β∗) ∩ Support(β)|.

Theorem (“All or nothing”)

(Gamarnik,Z. 2016) Set n∗ := 2k

log
(

2k
σ2

+1
) log p and let ε > 0 be arbitrary.

• If n < (1 – ε) n∗, then w.h.p. 1
kOverlap(β̂)→ 0, as n, p, k→ +∞.

• If n > (1 + ε) n∗, then w.h.p. 1
kOverlap(β̂)→ 1, as n, p, k→ +∞.
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Maximum Likelihood Estimator

Comments:

(1) Information exists when n > (1 + ε)n∗!

(2) A sharp phase transition!

(3) A challenging application of the second moment method.
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Algorithmic Hardness (?)

Question: Why no efficient algorithm is known when n∗ < n < 2k log p
and many are when n > 2k log p?

A usual picture in the analysis of randoms CSPs. Theory of random CSPs
suggests that a usual reason is an “important change in the geometry
of the space of solutions” between the two regimes.[Achlioptas et al,
2008].

Usually when such a property holds no efficient algorithm exists and when
it ceases, even “local” algorithms work (remember yesterday’s talk).

Various names: shattering property, overlap gap property.
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The Overlap Gap Property (OGP) for Linear Regression

The OGP (informally): The set of β ′s with “small” ‖Y – Xβ‖2
“shatters” in two components, one where β have low overlap with the
ground truth β∗ and one where they have high overlap with β∗.

Figure: The OGP around Y
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The Overlap Gap Property for Linear Regression-definition

For r > 0, set Sr := {β ∈ {0, 1}p : ||β||0 = k, n–
1
2 ||Y – Xβ||2 < r}.

Definition (The Overlap Gap Property)

Let r > 0 and 0 < ζ1 < ζ2 < 1. We say that the high-dimensional linear
regression problem defined by (X, W,β∗) satisfies the Overlap Gap
Property with parameters (r, ζ1, ζ2) if the following holds.

(a) For every β ∈ Sr,

1

k
Overlap (β) < ζ1 or

1

k
Overlap (β) > ζ2.

(b) Both the sets

Sr ∩ {β :
1

k
Overlap (β) < ζ1} and Sr ∩ {β :

1

k
Overlap (β) > ζ2}

are non-empty.
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The Overlap Gap Property- The result

Theorem

There exists C > c > 0 such that,

• If n∗ < n < ck log p then w.h.p. OGP holds for some r = rk and
0 < ζ1 < ζ2 < 1.

• If n > Ck log p then w.h.p. OGP does not hold for any choice of
r = rk and 0 < ζ1 < ζ2 < 1.(post-COLT)

An easy corollary: if n < ck log p then any “local-greedy” algorithm will
fail w.h.p.

Also, if n > Ck log p then the simplest “local-greedy” works!(post-COLT)
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Summary

(1) We show that when n > (1 + ε)n∗ for some ε > 0, information
exists to recover β∗.

(2) The performance of the optimal estimator M.L.E. changes suddenly
w.h.p. when the number of samples crosses the value n∗.

(3) We conjecture that the regime n∗ < n < 2k log p is algorithmically
hard and we prove a geometrical phase transition to provide
support for it.
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Open Problems

• Can it be proven that assuming n < (1 – ε)n∗, there is no information
to recover any fraction of the support of β∗?
• Can we prove/provide more support that n∗ < n < 2k log p is

algorithmically hard? For example, can we find a reduction from the
planted clique like in sparse PCA [Berthet, Rigollet ’13]?

Thank you!!
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Proof Ideas-1

• Set d = minβ∈{0,1}p,
∑p

i=1 βi=k (||Y – Xβ||2) .

• For any ` ∈ {0, 1, . . . . , k} set

T` = {β ∈ {0, 1}p
∣∣ p∑
i=1

βi = k, Overlap(β) = `}.

• Set d` = minβ∈T` (||Y – Xβ||2) . Then d = min`=0,1,...,k d`.
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Proof Ideas-2

• We show that w.h.p. for all ` = 0, 1, . . . , k,

d` ∼
√

2k(1 –
`

k
) + σ2 exp

(
–

k(1 – `
k) log p

n

)
.

• So, w.h.p. for all ` = 0, 1, . . . , k ,

d` ∼ f

(
1 –

`

k

)
,

for f (α) :=
√

2αk + σ2 exp
(

–αk log p
n

)
,α ∈ [0, 1]

• So w.h.p.

d ∼ min
`=0,1,...,k

f

(
1 –

`

k

)
∼ min
α∈[0,1]

f (α) .
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f (α) .
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Proof Ideas-3

• f is strictly log-concave, so d ∼ min (f(0), f(1)).

• But

f(0) > f(1)⇔
√
σ2 >

√
2k + σ2 exp

(
–

k log p

n

)
⇔ n >

2k

log
(
2k
σ2

+ 1
) log p.

• So the optimization problem changes behavior exactly at

n∗ :=
2k

log
(
2k
σ2

+ 1
) log p.

• Therefore n > n∗ iff f is minimized at 1 iff d` being minimized at 0,
which happens iff the optimal vector has full common support with
β∗.
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Proof Ideas-4

Two pictures behind the phase transition
(p = 109, k = 10,σ2 = 1,n∗ = 136);

Figure: The behavior of f for
n = 40 < n∗.

Figure: The behavior of f for
n∗ < n = 150.

Comment: α := 1 – `
k , so α = 1 means no recovery and α = 0 full

recovery.
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