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The problem of recovering the sparsity pattern of an unknown vector β∗ based on noisy
observations arises in a broad variety of contexts including subset selection in regression,
structure estimation in graphical models and signal denoising.

Our Model
Setup: Let β∗ ∈ {0, 1}p be a binary k-sparse vector. For

•X ∈ Rn×p consisting of entries i.i.d N(0, 1) random variables
•W ∈ Rn consisting of entries i.i.d. N(0, σ2) random variables with σ2 = o(k)

we get n noisy linear samples of β∗, Y ∈ Rn, given by,

Y := Xβ∗ + W.

Goal: Given (Y,X), recover w.h.p. β∗ with the minimum n possible.

Why binary?

•Discrete structure⇒ easier to analyze.
• Keeps the challenge of support recovery (highly nontrivial)
• Best known information theoretic lower bound is much smaller than the best known

algorithmic upper bound.

Literature Review

• Best known positive results
(e.g. [Donoho ’06],[Wainwright ’09]) If

n > 2k log p

many efficient algorithms (including LASSO) recover exactly β∗ w.h.p.

• Best known negative result
([Wang et al ’10]) If

n < n∗ :=
2k

log
(

2k
σ2

+ 1
) log p,

then there is no recovery mechanism of β∗ which succeeds w.h.p.

Main Question
There is a gap in the literature when n∗ < n < 2k log p.
Is there enough information/ efficient algorithms to recover β∗ in this regime?

Maximum Likelihood Estimator - All or Nothing result
It has a simple-to-state form: the MLE β̂ is the optimal solution of

(Φ2) min
β∈{0,1}p,

∑p
i=1 βi=k

||Y −Xβ||2.

Definition 1 For β ∈ {0, 1}p, k-sparse we define

Overlap(β) := |Support(β∗) ∩ Support(β)|.
Theorem 1 (“All or nothing”) Set n∗ := 2k

log
(
2k
σ2

+1
) log p and let ε > 0 be arbitrary.

• If n < (1− ε)n∗, then w.h.p. 1
kOverlap(β̂)→ 0, as n, p, k → +∞.

• If n > (1 + ε)n∗, then w.h.p. 1
kOverlap(β̂)→ 1, as n, p, k → +∞.

So, when n > n∗ information exists and n∗ is a sharp phase transition point.

Algorithmic Difficulty
Why all known efficient algorithms seem to fail when n∗ < n < 2k log p and work only if
n > 2k log p?

The picture from the analysis of randoms CSPs and spin glass theory suggests that a
usual reason is an “important change in the geometry of the space of solutions”
between the two regimes.[Achlioptas et al, 2008]

Such a geometrical property has been established for many problems such as random
k-SAT, k-coloring of a random graph, maximum independent set in a sparse random graph
and many others. (Figure below by [Krzakala et al’ 07])

Overlap Gap Property in Linear Regression
We prove a geometrical property for the near-optimal feasible solutions of the problem
(Φ2). We call the property Overlap Gap Property (OGP) for high-dimensional linear re-
gression. For r > 0, set

Sr := {β ∈ {0, 1}p : ||β||0 = k, n−
1
2||Y −Xβ||2 < r}.

Definition 2 (The Overlap Gap Property) Let r > 0 and 0 < ζ1 < ζ2 < 1. We say that
the high-dimensional linear regression problem defined by (X,W, β∗) satisfies the Overlap
Gap Property with parameters (r, ζ1, ζ2) if the following holds.

(a) For every β ∈ Sr,

1

k
Overlap (β) < ζ1 or

1

k
Overlap (β) > ζ2.

(b) Both the sets

Sr ∩ {β :
1

k
Overlap (β) < ζ1} and Sr ∩ {β :

1

k
Overlap (β) > ζ2}

are non-empty.

Intuitively, this means that the set of β′s with closed to optimum objective value in (Φ2)
“shatters” in two components, one with low overlap size with the ground truth β∗ and
one with high overlap size with β∗.

Figure 4: The OGP around Y

Theorem 2 Suppose the assumptions of Theorem 1 hold. There exists C > c > 0 with the
following properties.
• If n∗ < n < ck log p then there exists 0 < ζ1 < ζ2 < 1 and a sequence rk > 0 such that

w.h.p. as k increases the high-dimensional problem defined by our model satisfies the
Overlap Gap Property with parameters (r, ζ1, ζ2).
• If n > Ck log p then for any 0 < ζ1 < ζ2 < 1 and any sequence rk > 0 w.h.p. as k

increases the high-dimensional problem defined by our model does not satisfy the
Overlap Gap Property with parameters (r, ζ1, ζ2).

Corollary 1 (Informal) If n < ck log p then any “successful” local search algorithm needs in
the worst case to increase the distance from Y in at least one step.

Summary

•We positively answer the question of whether information for recovering β∗ exists
when n > n∗.
•We establish a certain Overlap Gap Property(OGP) in the space of binary k-sparse vec-

tors when n < ck log p. We conjecture that OGP is the source of algorithmic hardness
of the problem when n∗ < n < 2k log p.
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