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Abstract

This thesis focuses on two long-studied high-dimensional statistical models, namely

(1) the high-dimensional linear regression (HDLR) model, where the goal is to recover a hidden
vector of coefficients from noisy linear observations, and

(2) the planted clique (PC) model, where the goal is to recover a hidden community structure
from a much larger observed network.

The following results are established.
First, under assumptions, we identify the exact statistical limit of the model, that is the

minimum signal strength allowing a statistically accurate inference of the hidden vector. We
couple this result with an all-or-nothing information theoretic (IT) phase transition. We prove
that above the statistical limit, it is IT possible to almost-perfectly recover the hidden vector,
while below the statistical limit, it is IT impossible to achieve non-trivial correlation with the
hidden vector.

Second, we study the computational-statistical gap of the sparse HDLR model; The statisti-
cal limit of the model is significantly smaller than its apparent computational limit, which is the
minimum signal strength required by known computationally-efficient methods to perform sta-
tistical inference. We propose an explanation of the gap by analyzing the Overlap Gap Property
(OGP) for HDLR. The OGP is known to be linked with algorithmic hardness in the theory of
average-case optimization. We prove that the OGP for HDLR appears, up-to-constants, simul-
taneously with the computational-statistical gap, suggesting the OGP is a fundamental source
of algorithmic hardness for HDLR.

Third, we focus on noiseless HDLR. Here we do not assume sparsity, but we make a certain
rationality assumption on the coefficients. In this case, we propose a polynomial-time recovery
method based on the Lenstra-Lenstra-Lóvasz lattice basis reduction algorithm. We prove that
the method obtains notable guarantees, as it recovers the hidden vector with using only one
observation.

Finally, we study the computational-statistical gap of the PC model. Similar to HDLR, we
analyze the presence of OGP for the PC model. We provide strong (first-moment) evidence
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that again the OGP coincides with the model’s computational-statistical gap. For this reason,
we conjecture that the OGP provides a fundamental algorithmic barrier for PC as well, and
potentially in a generic sense for high-dimensional statistical tasks.

Thesis Supervisor: David Gamarnik
Title: Professor of Operations Research
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In loving memory of my father, Pavlos Zadik (Dec. 1947 - Sept. 2014).
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Chapter 1

Introduction

The problem of statistical inference is one of the most fundamental tasks in the field of statistics.

The question it studies is the following: assuming one has access to a dataset consisting of samples

drawn from an unknown data distribution, can they infer structural properties of the underlying

distribution? One of the earliest recorded examples of statistical inference methods can be traced

back at least to the early 1800’s. In 1801, Gauss introduced and used the least squares method,

a now popular statistical method, to infer the orbits of celestial bodies [Mar77] (as a remark, the

least squares method was introduced independently by Legendre in 1805 [Sti81]). In that way,

Gauss had major impact in astronomy, as he guided the astronomers of the time to successfully

infer the orbit of the newly-then discovered asteroid Ceres [Mar77].

During the 19th and 20th century, statistical inference established its existence as a mathe-

matical field of study with the fundamental work of the statisticians Galton, Neyman, Pearson,

Fisher and Yule among others (see e.g. some of their fundamental works [Gal85], [Yul97], [Fis22],

[NP33]). Furthermore, the field shows an extensive study of classical statistical inference models

such as regression, classification and (more recently) network models (see the associated chapters

in the book [HTF09] and references therein). One common characteristic in most of this classic

work, is that the statistical models considered are assumed to have a relatively small number

of features and the focus is on creating statistical estimators which achieve asymptotically opti-

mal performance as the sample size becomes arbitrarily large ("grows to infinity"). A common

example of such an asymptotic property is statistical consistency, where an estimator is named

consistent if it converges to some "fixed" true value, as the sample size grows [HTF09].
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However, in recent years, mostly due to the emergence of the Big Data paradigm, there has

been an explosion on the available data which are actively used for various statistical infer-

ence tasks across disciplines of science [BBHL09], [CCL+08], [LDSP08], [QMP+12], [PZHS16],

[CWD16]. For example, this has proven a revolutionary fact for many scientific fields from biology

[BBHL09], [CCL+08] to electrical engineering [QMP+12], [PZHS16] to social sciences [CWD16].

Naturally, though, the "explosion" of the available data leads to the "explosion" of the feature

size which should be taken into account in the "high-dimensional" statistical inference models.

This implies that the feature size should grow together with the sample size to infinity. On top

of this, in many high dimensional statistical application, such as genomics [BBHL09], [CCL+08]

and radar imaging [LDSP08], the feature size is not only comparable with the number of sam-

ples, but significantly larger than it. This is exactly the opposite regime to the one which is

classically analyzed in statistical inference. These reasons lead to the recent research field of high

dimensional statistical inference.

The study of high-dimensional inference is inherently connected with computational ques-

tions. The computational challenge is rather evident; the statistical algorithms are now defined

on input domains of a very large size and therefore, to produce meaningful outputs in reason-

able time, their termination time guarantees should be scalable with respect to the (potentially

massive) input’s size. Note that, with high dimensional input, this is a non-trivial consideration

as many "textbook" statistically optimal algorithms usually take the form of an, in principle

non-convex optimization problem. A standard example is the paradigm of maximum likelihood

estimation.

High-dimensionality also leads to multiple statistical and modeling challenges. An important

challenge is with respect to the techniques that can be used in that setting: both the classical

version of the Central Limit Theorem [Nag76] and the Student-t test [FHY07] have been proven

to fail in high dimensional cases. A case in point, which is highly relevant to the results in

this thesis, is a modeling challenge in high dimensional linear regression. Specifically, consider

the linear regression setting where the statistician observes 𝑛 noisy linear samples of a hidden

vector 𝛽* ∈ R𝑝 of the form 𝑌 = 𝑋𝛽* + 𝑊 for 𝑋 ∈ R𝑛×𝑝 and 𝑊 ∈ R𝑛. Note that here

𝑝 corresponds to the number of features. The goal is to infer the hidden vector 𝛽* from the

pair (𝑌,𝑋). High-dimensionality translates simply to 𝑛 < 𝑝 and 𝑝 → +∞. Note that the
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moment high-dimensionality is imposed, a non-identifiability issue arises: even in the extremely

optimistic case for the statistician where 𝑊 = 0, 𝛽* is simply one out of the infinitely many

solutions of the underdetermined linear system 𝑌 = 𝑋𝛽*. This, in principle, makes inference in

high dimensional linear regression impossible. In particular, additional assumptions need to be

added to the regression model. For example, one of the standard assumptions in the literature

of high dimensional linear regression is that the vector 𝛽* is sparse, that is most of its entries are

equal to zero. Under the sparsity assumption, accurate inference indeed becomes possible for 𝑛

much smaller than 𝑝 (see [HTW15] and references therein).

It becomes rather clear from the above discussion that the study of high dimensional statis-

tical models require a novel study with respect to both its computational and statistical limits.

Towards this goal a large body of recent research has been devoted to identifying those limits for

various high dimensional statistical models. For example, the following high dimensional mod-

els have been analyzed in the literature: the sparse PCA problem, submatrix localization, RIP

certification, rank-1 submatrix detection, biclustering, high dimensional linear regression, the

tensor PCA problem, Gaussian mixture clustering and the stochastic block model (see [WX18],

[BPW18] for two recent surveys and references therein for each model). We start by explicitly

stating how the statistical and computational limits are defined for a high dimensional statistical

inference problem.

For the statistical limit, the focus is on understanding the sampling complexity (or minimax

rates) of the high dimensional statistical models. That is the focus is on the following question,

The statistical question: What is the minimum necessary "signal strength" to perform an

accurate statistical inference?

We call the answer to the question above, the statistical limit of the model. Notice that to define

statistical limit we assume unbounded computational power for the statistical estimators. For

the computational limits, the focus is on computationally efficient estimators. For the results in

this thesis we interpet computationally-efficient algorithms as algorithms with termination time

being polynomial in the input dimensions. We focus on:

The computational question: What is the minimum necessary "signal strength" to perform

an accurate and computationally efficient statistical inference?
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We call the answer to the question above, the computational limit of the model. For many of

the mentioned models, the accurate identification of the statistical and computational limits are

far from being well-understood.

Despite being far from a complete theory, an interesting phenomenon has been repeatedly

observed in the study of high-dimensional statistical models; the statistical limit of the problem

appears usually significantly below the smallest known computational limit that is,

statistical limit ≪ computational limit.

This phenomenon is called a computational-statistical gap [WX18], [BPW18]. Examples of

models where computational-statistical gaps appears include, but are not limited to: the high-

dimensional linear regression problem, the planted independent set problem and the planted

dense subgraphs problems in sparse Erdős-Rényi graphs, the planted clique problem in dense

Erdős-Rényi graphs, the Gaussian bi-clustering problem, the sparse rank-1 submatrix problem,

the tensor decomposition problem, the sparse PCA problem, the tensor PCA problem and the

stochastic block model (see [BBH18] and references therein).

Computational-statistical gaps provide a decomposition of the parameters space into three

(possibly empty) regimes;

∙ (the information-theoretic impossible regime) The regime where the "signal strength" is

less than the statistical limit, making inference impossible.

∙ (the algorithmically easy regime) The regime where the "signal strength" is larger than the

computational limit so that the inference task is possible and is achieved by computationally

efficient methods.

∙ (the apparent algorithmically hard regime) The regime where the "signal strength" is in

between the statistical limit and the computational limit, and therefore the inference task

is statistically possible but no computationally efficient method is known to succeed.

Note that the existence (or non-triviality) of the hard regime is equivalent with the presence of

a computational-statistical gap for the model.
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Towards understanding computational-statistical gaps, and specifically identifying the funda-

mentally hard region for various inference problems, a couple of approaches have been considered.

One of the approaches seeks to identify the algorithmic limit "from above", in the sense of iden-

tifying the fundamental limits in the statistical performance of various families of known com-

putationally efficient algorithms. Some of the families that have been analyzed are (1) the Sum

of Squares (SOS) hierarchy, which is a family of convex relaxation methods [Par00], [Las01] (2)

the family of local algorithms inspired by the Belief Propagation with the celebrated example of

Approximate Message Passing [DMM09], [DJM13]), (3) the family of statistical query algorithms

[Kea98] and (4) several Markov Chain Monte Carlo algorithms such as Metropolis Hasting and

Glauber Dynamics [LPW06]. Another approach offers an average-case complexity-theory point

of view [BR13], [CLR17], [WBP16], [BBH18]. In this line of work, the hard regimes of the var-

ious inference problems are linked by showing that solving certain high dimensional statistical

problems in their hard regime reduces in a polynomial time to solving other high dimensional

statistical problems in their own hard regime.

In this thesis, we build on a third approach to understand computational-statistical gaps. We

study the geometry of the parameter space (we also call it solution space geometry for reasons

that are to become apparent) and investigate whether a geometrical phase transition occurs

between the easy and the hard regime.

The geometric point of view we follow is motivated from the study of average-case optimiza-

tion problems, that is combinatorial optimization problems under random input. These problems

are known to exhibit computational-existential gaps ; that is there exists a range of values of the

objective function which on the one hand are achievable by some feasible solution but on the

other hand no computationally efficient method is proven to succeed. The link with the geometry

comes out of the observation that for several average-case optimization problems (and their close

relatives, random constraint satisfaction problems) an inspiring connection have been drawn be-

tween the geometry of the space of feasible solutions and their algorithmic difficulty in the regime

where the computational-existential gap appears (the conjectured hard regime). Specifically it

has been repeatedly observed that the conjectured algorithmically hard regime for the problem

coincides with the appearance of a certain disconnectivity property in the solution space called

the Overlap Gap Property (OGP), originated in spin glass theory. Furthermore, it has also been
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seen that at the absence of this property very simple algorithms, such as greedy algorithms can

exploit the smooth geometry and succeed. The definition of OGP is motivated by the concen-

tration of the associated Gibbs measures [Tal10] for low enough temperature to the optimization

problem, and concerns the geometry of the near (optimal) feasible solutions. We postpone the

exact definition of OGP to later chapters of this thesis. The connection between the hard regime

for the optimization problem and the presence of OGP in the feasible space was initially made in

the study of the celebrated example of random 𝑘-SAT (independently by [MMZ05], [ACORT11])

but then has been established for other models such as maximum independent set in random

graphs [GSa], [RV14].

Note that contrary to statistical inference models, in average-case optimization problems there

is no "planted" structured to be inferred and the goal is solely to maximize an objective value

among a set of feasible solutions. For this reason, one cannot immediately transfer the literature

on the Overlap Gap Property from computational-existential gaps to computational-statistical

gaps. Nevertheless, one goal of this thesis is to make this possible by appropriately defining and

using the Overlap Gap Property notion to study the computational-statistical gaps. In particular

we are interested in the following question,

Can the Overlap Gap Property phase transition explain the appearance of

computational-statistical gaps in statistical inference?

The goal of this thesis is to present results for the computational-statistical gaps of two well-

studied and fundamental statistical inference problems: the high dimensional linear regression

model and the planted clique model.

1.1 The Models: Definitions and Inference Tasks

In this subsection we describe the two high-dimensional statistical models this thesis is focusing

on. Our goal to study their computational-statistical gaps.

1.1.1 The High Dimensional Linear Regression Model

As explained in the introduction, fitting linear regression models to perform statistical inference

has been the focus of a lot of research work over the last two centuries. Recently the study
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of linear regression has seen a revival of interest from scientists, because of the new challenge

of high dimensionality, with applications ranging from compressed sensing [CT05], [Don06] to

biomedical imaging [BLH+14], [LDSP08] to sensor networks [QMP+12], [PZHS16] (see also three

recent books on the topic [Wai19], [HTW15], [FR13]).

Our first model of study is the high dimensional linear regression model which is a simpli-

fied and long-studied mathematical version of high dimensional linear regression. Despite its

simplicity, the analysis of the model has prompted various important algorithmic and statistical

developments in the recent years, for example the development of the LASSO algorithm [HTW15]

and multiple compressed sensing methods [FR13].

We study the high dimensional linear regression model in Chapters 2, 3, 4 and 5.

Setting Let 𝑛, 𝑝 ∈ N. Let

𝑌 = 𝑋𝛽* +𝑊 (1.1)

where 𝑋 is a data 𝑛× 𝑝 matrix, 𝑊 is a 𝑛× 1 noise vector, and 𝛽* is the (unknown) 𝑝× 1 vector

of regression coefficients. We refer to 𝑛 as the number of samples of the model and 𝑝 as the

number of features for the model.

Inference Task The inference task is to recover 𝛽* from having access only to the data matrix

𝑋 and the noisy linear observations 𝑌 . The goal is to identify the following two fundamental

limits of this problem

∙ the minimum 𝑛 so that statistically accurate inference of 𝛽* is possible by using any esti-

mator (statistical limit) and

∙ the minimum 𝑛 so that statistically accurate inference of 𝛽* is possible by using a compu-

tationally efficient estimator, that is an estimator with worst case termination time being

polynomial in 𝑛, 𝑝 (computational limit).

Gaussian Assumptions on 𝑋,𝑊 Unless otherwise mentioned, we study the problem in the

average case where (𝑋,𝑊 ) are generated randomly where 𝑋 has iid 𝒩 (0, 1) entries and 𝑊 has

iid 𝒩 (0, 𝜎2). Here and everywhere below by 𝒩 (𝜇, 𝜎2) we denote the normal distribution on

the real line with mean 𝜇 and variance 𝜎2. The model has been studied extensively under these
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assumptions in the literature, see for example [EACP11], [JBC17], [Wai09b], [Wai09a], [WWR10]

and the references in [HTW15, Chapter 11].

Parameters Assumptions The focus is on the high dimensional setting where 𝑛 < 𝑝 and

both 𝑝 → +∞. The recovery should occur with probability tending to one, with respect to the

randomness of 𝑋,𝑊 , as 𝑝 → +∞ (w.h.p.). For the whole thesis, we assume that 𝑝 → +∞
and the parameters 𝑛, 𝑘, 𝜎2 are sequences indexed by 𝑝, 𝑛𝑝, 𝑘𝑝, 𝜎

2
𝑝. The parameters 𝑛, 𝑘, 𝜎2 are

assumed to grow or not to infinity, depending on the specific context.

Structural Assumptions on 𝛽* As mentioned in the Introduction, the high-dimensional

regime is an, in principle, impossible regime for (exact) inference of 𝛽* from (𝑌,𝑋) ; the underly-

ing linear system, even at the extreme case 𝜎 = 0, is underdetermined. For this reason, following

a large line of research, we study the model under the additional structural assumptions on the

vector 𝛽*.

Depending on the chapter we make different structural assumption on the vector of coefficients

𝛽*. We mention here the two most common assumptions throughout the different Chapters of

this thesis. Unless otherwise specified, we study the high dimensional linear regression model

under these assumptions.

First, we assume that the vector of coefficients 𝛽* is 𝑘-sparse, that is the support size of 𝛽*

(i.e. the number of regression coefficients with non-zero value) equals to some positive integer

parameter 𝑘 which is usually taken much smaller than 𝑝. Sparsity is a well-established assumption

in the statistics and compressed sensing literature (see for exaple, the books [HTW15, FR13]),

with various applications for example in biomedical imaging [BLH+14], [LDSP08] and sensor

networks [QMP+12], [PZHS16].

Second, we assume that the non-zero regression coefficients 𝛽*
𝑖 are all equal with each other

and (after rescaling) equal to one; that is we assume we assume a binary 𝛽* ∈ {0, 1}𝑝. From a

theoretical point of view, we consider this more restrictive case to make possible a wider technical

development and a more precise mathematical theory. From an applied point of view, the case of

binary and more generally discrete-valued 𝛽* has received a large interest in the study of wireless

communications and information-theory literature [HB98], [HV02], [BB99], [GZ18], [TZP19],

[ZTP19]. Finally, recovering a binary vector is equivalent with recovering the support of the
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vector (indices of non-zero coordinates), which is a fundamental question in the literature of

the model [TWY12], [OWJ11],[RG13],[Geo12], [Zha93], [MB06a] with various applications such

as in gene selection in genomics [HC08], [HG10], [HY09] and radar signal processing [Dud17],

[XZB01], [CL99].

Now, we would like to emphasize that in most cases we do not assume a prior distribution

on 𝛽*; we simply assume that 𝛽* is an arbitrary fixed, yet unknown, structured vector (e.g. a

binary and 𝑘-sparse vector). This is the setting of interest in Chapters 3, 4 and 5 where the exact

structural assumptions are explicitly described. The only time we assume a prior distribution is

on Chapter 2 where we assume that 𝛽* is chosen according to a uniform prior over the space of

binary 𝑘-sparse vectors.

1.1.2 The Planted Clique Model

Inferring a hidden community structure in large complex networks has been the focus on multiple

recent statistical applications from cognitive science (brain modeling) to web security (worm prop-

agation) to biology (protein interactions) and natural language processing [GAM+18, ZCZ+09,

PDFV05]

A simplified, yet long-studied, mathematical model for community detection is the planted

clique model, first introduced in [Jer92]. Despite its simplicity the model has motivated a large

body of algorithmic work and is considered one of the first and most well-studied models for

which a computational-statistical gaps appears [WX18, BPW18].

The planted clique model is studied in Chapter 6.

Setting Let 𝑛, 𝑘 ∈ N with 𝑘 ≤ 𝑛. The statistician observes an 𝑛-vertex undirected graph 𝐺

sampled in two stages. In the first stage, the graph is sampled according to an Erdős-Rényi

graph 𝐺
(︀
𝑛, 1

2

)︀
, that is there are 𝑛 vertices and each undirected edges is placed independently

with probability 1
2
. In the second stage, 𝑘 out of the 𝑛 vertices are chosen uniformly at random

and all the edges between these 𝑘 vertices are deterministically added (if they did not already

exist due to the first stage sampling). We call the second stage chosen 𝑘-vertex subgraph the

planted clique 𝒫𝒞.
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Inference Task The inference task of interest is to recover 𝒫𝒞 from observing 𝐺. The

computational-statistical gap relies upon identifying the minimum 𝑘 = 𝑘𝑛 so that inference of

𝒫𝒞 is possible by using an arbitrary estimator (statistical limit) and the minimum 𝑘 = 𝑘𝑛 so that

inference of 𝒫𝒞 is possible by a computationally efficient estimator (computational limit). The

statistical limit of the inference task is well-known in the literature to equal 𝑘 = 𝑘𝑛 = 2 log2 𝑛.

For this reason, in this thesis we focus on the computational limit of the model.

Parameters Assumptions The focus is on the asymptotic high-dimensional setting where

both 𝑘 = 𝑘𝑛, 𝑛→ +∞ and the recovery should hold with probability tending to one as 𝑛→ +∞
(w.h.p.).

1.2 Notation

For the rest of the Introduction we require the following mathematical notation.

For 𝑝 ∈ (0,∞), 𝑑 ∈ N and a vector 𝑥 ∈ R𝑑 we use its ℒ𝑝-norm, ‖𝑥‖𝑝 := (
∑︀𝑝

𝑖=1 |𝑥𝑖|𝑝)
1
𝑝 . For

𝑝 = ∞ we use its infinity norm ‖𝑥‖∞ := max𝑖=1,...,𝑑 |𝑥𝑖| and for 𝑝 = 0, its 0-norm ‖𝑥‖0 = |{𝑖 ∈
{1, 2, . . . , 𝑑}|𝑥𝑖 ̸= 0}|. We say that 𝑥 is 𝑘-sparse if ‖𝑥‖0 = 𝑘. We also define the support of 𝑥,

Support (𝑥) := {𝑖 ∈ {1, 2, . . . , 𝑑}|𝑥𝑖 ̸= 0}. For 𝑘 ∈ Z>0 we adopt the notation [𝑘] := {1, 2, . . . , 𝑘}.
Finally with the real function log : R>0 → R we refer everywhere to the natural logarithm. For

𝜇 ∈ R, 𝜎2 > 0 we denote by 𝒩 (𝜇, 𝜎2) the normal distribution on the real line with mean 𝜇 and

variance 𝜎2. We use standard asymptotic notation, e.g. for any real-valued sequences {𝑎𝑛}𝑛∈N
and {𝑏𝑛}𝑛∈N, 𝑎𝑛 = Θ(𝑏𝑛) if there exists an absolute constant 𝑐 > 0 such that 1

𝑐
≤ |𝑎𝑛

𝑏𝑛
| ≤ 𝑐;

𝑎𝑛 = Ω(𝑏𝑛) or 𝑏𝑛 = 𝑂 (𝑎𝑛) if there exists an absolute constant 𝑐 > 0 such that |𝑎𝑛
𝑏𝑛
| ≥ 𝑐;

𝑎𝑛 = 𝜔 (𝑏𝑛) or 𝑏𝑛 = 𝑜 (𝑎𝑛) if lim𝑛 |𝑎𝑛𝑏𝑛 | = 0.

1.3 Prior Work and Contribution per Chapter

First, we consider the high dimensional linear regression problem defined in Subsection 1.1.1.

As explained in the Introduction, our main goal is to study the existence and properties of the

computational-statistical gap of the problem. We study it under the distributional assumptions
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that 𝑋 has iid 𝒩 (0, 1) entries and 𝑊 has iid 𝒩 (0, 𝜎2) for some parameter 𝜎2. Furthermore we

assume that 𝛽* is a binary 𝑘-sparse vector.

The focus of most of this thesis is on sublinear sparsity levels, that is, using asymptotic

notation, 𝑘 = 𝑜 (𝑝). Nevertheless, before diving into specific contributions it is worth pointing

out that a great amount of literature has been devoted on the study of the computational-

statistical gap in the linear regime where 𝑛, 𝑘, 𝜎 = Θ(𝑝). One line of work has provided upper

and lower bounds on the minimum MSE (MMSE) E [‖𝛽* − E [𝛽* | 𝑋, 𝑌 ] ‖22] as a function of the

problem parameters, e.g. [ASZ10, RG12, RG13, SC17]. Here and everywhere below for a vector

𝑣 ∈ R𝑝 we denote by ‖𝑣‖2 ,
√︀∑︀𝑝

𝑖=1 𝑣
2
𝑖 it’s ℓ2 norm. Another line of work has derived explicit

formulas for the MMSE. These formulas were first obtained heuristically using the replica method

from statistical physics [Tan02, GV05] and later proven rigorously in [RP16, BDMK16]. Finally,

another line of work has provided nearly-optimal computationally efficient methods in this setting

using Approximate Message Passing [DMM09, DJM13]. However, to our best of knowledge, most

of the techniques used in the proportional regime cannot be used to establish similar results when

𝑘 = 𝑜(𝑝) (with notable exceptions such as [RGV17]). Although there has been significant work

focusing also on the sublinear sparsity regime, the exact identification of both the computational

and the statistical limits in the sublinear regime, remained an outstanding open problem prior

to the results of this thesis. We provide below a brief and targeted literature review, postponing

a detailed literature review at the beginning of each Chapter, and provide a high-level summary

of our contributions.

The statistical limit of High-Dimensional Linear Regression

We start our study with the statistical limit of the problem. To identify the statistical limit we

adopt a Bayesian perspective and assume 𝛽* is chosen from the uniform prior over the binary

𝑘-sparse vectors that is uniform on the set {𝛽* ∈ {0, 1}𝑝 : ‖𝛽*‖0 = 𝑘}.

To judge the recovery performance of 𝛽* from observing (𝑌,𝑋) we focus on the mean squared

error (MSE). That is, given an estimator 𝛽 as a function of (𝑌,𝑋), define mean squared error as

MSE
(︁
𝛽
)︁
, E

[︁
‖𝛽 − 𝛽*‖22

]︁
,
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where ‖𝑣‖ denotes the ℓ2 norm of a vector 𝑣. In our setting, one can simply choose 𝛽 =

E [𝛽*], which equals 𝑘
𝑝
(1, 1, . . . , 1)⊤, and obtain a trivial MSE0 = E [‖𝛽* − E [𝛽*] ‖22], which equals

𝑘
(︁
1− 𝑘

𝑝

)︁
. We will adopt the following two natural notions of recovery, by comparing the MSE

of an estimator 𝛽 to MSE0.

Definition 1.3.1 (Strong and weak recovery). We say that 𝛽 = 𝛽(𝑌,𝑋) ∈ R𝑝 achieves

∙ strong recovery if lim sup𝑝→∞ MSE
(︁
𝛽
)︁
/MSE0 = 0;

∙ weak recovery if lim sup𝑝→∞ MSE
(︁
𝛽
)︁
/MSE0 < 1.

A series of results studies the statistical, or information-theoretic as it is also called, limit of

both the strong and weak recovery problems have appeared in the literature. A crucial value for

the sample size appearing in all such results when 𝑘 = 𝑜(𝑝) is

𝑛info =
2𝑘 log 𝑝

𝑘

log
(︀

𝑘
𝜎2 + 1

)︀ . (1.2)

For the impossibility direction, previous work [ASZ10, Theorem 5.2], [SC17, Corollary 2] has

established that when 𝑛 ≤ (1− 𝑜 (1))𝑛info, strong recovery, is information-theoretically impos-

sible and if 𝑛 = 𝑜(𝑛info), weak recovery is impossible. For the achievability direction, Rad in

[Rad11] has proven that for any 𝑘 = 𝑜 (𝑝) and 𝜎2 = Θ(1), there exist some large enough con-

stant 𝐶 > 0 such that if 𝑛 > 𝐶𝑛info then strong recovery is possible with high probability. In a

similar spirit, [AT10, Theorem 1.5] shows that when 𝑘 = 𝑜(𝑝), 𝑘/𝜎2 = Θ(1), and 𝑛 > 𝐶𝑘/𝜎2𝑛info

for some large enough 𝐶𝑘/𝜎2 > 0, it is information theoretically possible to weakly recover the

hidden vector.

The literature suggests that the statistical limit is of the order Θ(𝑛info), but (1) it is only

established in very restrictive regimes for the scaling of 𝑘, 𝜎2, (2) the distinction between weak

and strong recovery is rather unclear and finally (3) the identification of the exact constant in

front of 𝑛info seems not to be well understood. These considerations raises the main question of

study in Chapter 2;

Question 1: What is the exact statistical limit for strong/weak recovery of 𝛽*?

We answer this question and establish that 𝑛info is the exact statistical limit of the problem
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in a very strong sense. We prove that assuming 𝑘 = 𝑜
(︀√

𝑝
)︀
, for any positive constant 𝜖 > 0 if

the signal-to-noise ratio 𝑘/𝜎2 bigger than a sufficiently large constant then,

∙ when 𝑛 < (1− 𝜖)𝑛info weak recovery is impossible, but

∙ when 𝑛 > (1 + 𝜖)𝑛info strong recovery is possible.

This establishes an "all-or-nothing statistical phase transition". To the best of our knowledge

this is the first time such a phase transition is established for a high dimensional inference model.

The computational limit of High-Dimensional Linear Regression

We now turn to the study of the computational-limit for the high-dimensional linear regression

model. For these results no prior distribution is assumed on 𝛽* and 𝛽* is assumed to be an

arbitrary but fixed binary 𝑘-sparse vector. Note that this is a weaker assumption, in the sense

that any with high probability property established under such an assumption, immediately

transfers to any prior distribution for 𝛽*.

The optimal sample size appearing in the best known computationally efficient results is

𝑛alg =
(︀
2𝑘 + 𝜎2

)︀
log 𝑝. (1.3)

More specifically, a lot of the literature has analyzed the performance of LASSO, the ℓ1- con-

strained quadratic program:

min
𝛽∈R𝑝

{‖𝑌 −𝑋𝛽‖22 + 𝜆𝑝‖𝛽‖1}, (1.4)

for a tuning parameter 𝜆𝑝 > 0 [Wai09b], [MB06b], [ZY06], [BRT09a]. It is established that

as long as 𝜎 = Θ(1) and 𝑘 grows with 𝑝, if 𝑛 > (1 + 𝜖)𝑛alg for some fixed 𝜖 > 0, then for

appropriately tuned 𝜆𝑝 the optimal solution of LASSO strongly recovers 𝛽* [Wai09b]. Further-

more, a greedy algorithm called Orthogonal Matching Pursuit has also proven to succeed with

(1 + 𝜖)𝑛alg samples [CW11]. To the best of our knowledge, besides decades of research efforts, no

tractable (polynomial-in-𝑛, 𝑝, 𝑘 termination time) algorithms is known outperform LASSO when

𝑘 = 𝑜 (𝑝), in the sense of achieving strong recovery of 𝛽* with 𝑛 ≤ 𝑛alg samples. This suggest

that the sample size 𝑛alg could correspond to the computational limit of the problem.
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At this point, we would like to compare the thresholds 𝑛alg and the information-theoretic

limit 𝑛info given in (1.2). Assuming the signal to noise ratio 𝑘/𝜎2 is sufficiently large, which is

considered in almost all the above results, 𝑛info is significantly smaller than 𝑛alg. This reason

gives rise to the computational-statistical gap which motivates studying the following question

in Chapters 3, 4:

Question 2: Is there a fundamental reason for the failure of computationally efficient

methods when 𝑛 ∈ [𝑛info, 𝑛alg]?

We offer a geometrical explanation for the gap by identifying 𝑛alg as the, up-to-constants,

Overlap Gap Property phase transition point of the model. Specifically, we consider the least

squares optimization problem defined by the Maximum Likelihood Estimation (MLE) problem;

(MLE) min 𝑛− 1
2‖𝑌 −𝑋𝛽‖2

s.t. 𝛽 ∈ {0, 1}𝑝

‖𝛽‖0 = 𝑘.

As explained in the Introduction, geometry and the Overlap Gap Property has played crucial

role towards understanding several computational-existential gaps for average-case optimization

problems. Note that (MLE) is an average-case optimization problem with random input (𝑌,𝑋).

We study it first with respect to optimality; we prove that as long as 𝑛 ≥ (1 + 𝜖)𝑛info, under

certain assumption on the parameters, the optimal solution of (MLE) equals 𝛽*, up to negligible

Hamming distance error. Hence (MLE) is an average-case optimization problem with optimal

solution almost equal to 𝛽*. Thus, in light of the discussion above, it is expected to be algorith-

mically hard to solve to optimality when 𝑛 < 𝑛alg. For this reason we appropriately define and

study the presence of the Overlap Gap Property (OGP) in the solution space of (MLE) in the

regime 𝑛 ∈ [𝑛info, 𝑛alg] and 𝑛 > 𝑛alg. We say that OGP holds in the solution space of (MLE)

if the nearly optimal solutions of (MLE) have only either high or low Hamming distance to 𝛽*,

and therefore the possible Hamming distances ( "overlaps" ) to 𝛽* exhibit gaps. We direct the

reader to Chapter 3 for the the exact definition of OGP and more references. We show that for

some constants 𝑐, 𝐶 > 0,

∙ when 𝑛 < 𝑐𝑛alg OGP holds in the solution space of (MLE) (Chapter 3), and
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∙ when 𝑛 > 𝐶𝑛alg OGP does not hold in the solution space of (MLE) (Chapter 4).

This provides evidence that the high dimensional linear regression recovery problem corresponds

to an algorithmically hard problem in the regime 𝑛 < 𝑐𝑛alg. In Chapter 3 we support the

hardness conjecture by establishing that the LASSO not only provably fails to recover exactly

the support in the regime 𝑛 < 𝑐𝑛alg, but in the same regime it fails to achieve a different notion

of recovery called ℓ2-stable recovery. In Chapter 4 besides establishing that OGP does not hold,

we also perform a direct local analysis of the optimization problem (MLE) proving that (1) when

𝑛 > 𝐶𝑛alg the optimization landscape is extremely "smooth" to the extent that the only local

minimum (under the Hamming distance metric between the binary 𝛽’s) is the global minimum 𝛽*

and (2) the success of a greedy local search algorithm with arbitrary initialization for recovering

𝛽* when 𝑛 > 𝐶𝑛alg.

The Noiseless High-Dimensional Linear Regression

An admittedly extreme, yet broadly studied, case in the literature of high dimensional linear

regression is when the noise level 𝜎 is extremely small, or even zero (also known as the noiseless

regime). In this case, the statistical limit of the problem 𝑛info, defined in (1.2), trivializes to

zero. In particular, our results in Chapter 2 imply that one can strongly recover information-

theoretically a sparse binary 𝑝-dimensional 𝛽* with 𝑛 = 1 sample, as 𝑝 → +∞. Notice that

in this regime the statistical-computational gap becomes even more profound: 𝑛info = 1 and

when 𝜎 = 0 according to (1.3) 𝑛alg = 2𝑘 log 𝑝 remains of the order of 𝑘 log 𝑝. Moreover Donoho

in [Don06] establishes that Basis Pursuit, a well-studied Linear Program recovery mechanism,

fails in the noiseless regime 𝜎 = 0 with 𝑛 ≤ (1 − 𝜖)𝑛alg samples for any fixed 𝜖 > 0. On

top of this, our Overlap Gap Property phase transition result described below in Question 2,

suggests that the geometry of the sparse binary vectors is rather complex at 𝜎 = 0 for any 𝑛

with 𝑛info = 1 ≤ 𝑛 < 𝑛alg.

On the other hand, the absence of noise makes the model significantly simpler ; it simply

is an underdetermined linear system. The linear structure allows the suggestion and rigorous

analysis of various computationally efficient mechanisms, moving potentially beyond the standard

algorithmic literature of the linear regression model which, as explained in the Introduction,

usually is based on either local or convex relaxation methods. These considerations lead to the
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following question which is investigated in Chapter 5:

Question 3: Is there a way to achieve computationally-efficient recovery with

𝑛 < 𝑛alg = 2𝑘 log 𝑝 samples, in the "extreme" noiseless regime 𝜎 = 0?

We answer this question affirmatively by showing that computational efficient estimation is

possible even when 𝑛 = 1. We do this by proposing a novel computationally efficient method

using the celebrated Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm (LLL was

introduced in [LLL82] for factoring polynomials with rational coefficients). We establish that

our recovery method can provably recover the vector 𝛽* with access only to one sample, 𝑛 = 1,

and 𝑝→ +∞. This profoundly breaks the algorithmic barrier 𝑛alg of the local search and convex

relaxation method (e.g. LASSO) in the literature. Our proposed algorithm heavily relies on the

integrality assumption on the regression coefficients, which trivially holds since 𝛽* is assumed to

be binary-valued. In particular, as opposed to Chapters 2, 3, 4, we do not expect the results

in Chapter 5 to generalize to the real-valued case. Interestingly, though, our algorithm does

not depend at all to the sparsity assumption on 𝛽* to be successful; it works for any integer-

valued 𝛽*. We consider the independence of our proposed algorithm to the sparsity assumption

a fundamental reason for its success. In that way the algorithm does not need to "navigate" in

the complex landscape of the binary sparse vectors where Overlap Gap Property holds, avoiding

the conjectured algorithmic barrier in this case.

The computational-statistical gap of the Planted Clique Model

We now proceed with discussing our results for the planted clique problem defined in Subsection

1.1.2. As said in the definition of the model, our goal is to provide an explanation for the

computational-statistical gap of this model as well.

The statistical limit of the model is exactly known in the literature to be 𝑘 = 𝑘𝑛 = 2 log2 𝑛

(see e.g. [Bol85]): if 𝑘 < (2− 𝜖) log2 𝑛 then it is impossible to recover 𝒫𝒞, but if 𝑘 ≥ (2+ 𝜖) log2 𝑛

the recovery of 𝒫𝒞 is possible by a brute-force algorithm. Here and everywhere below by log2

we refer to the logarithm function with base 2. It is further known that if 𝑘 ≥ (2 + 𝜖) log2 𝑛,

a relatively simple quasipolynomial-time algorithm, that is an algorithm with termination time

𝑛𝑂(log𝑛), also recovers 𝒫𝒞 correctly (see the discussion in [FGR+17] and references therein). On
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the other hand, recovering 𝒫𝒞 with a computationally-efficient (polynomial-in-𝑛 time) method

appears much more challenging. A fundamental work [AKS98] proved that a polynomial-time

algorithm based on spectral methods recovers 𝒫𝒞 when 𝑘 ≥ 𝑐
√
𝑛 for any fixed 𝑐 > 0 (see also

[FR10], [DM], [DGGP14] and references therein.) Furthermore, in the regime 𝑘/
√
𝑛→ 0, various

computational barriers have been established for the success of certain classes of polynomial-time

algorithms [BHK+16], [Jer92], [FGR+17]. Nevertheless, no general algorithmic barrier such as

worst-case complexity-theoretic barriers has been proven for recovering 𝒫𝒞 when 𝑘/
√
𝑛 → 0.

The absence of polynomial-time algorithms together with the absence of a complexity-theory

explanation in the regime where 𝑘 ≥ (2 + 𝜖) log2 𝑛 and 𝑘/
√
𝑛 → 0 gives rise to arguably one of

the most celebrated and well-studied computational-statistical gaps in the literature, known as

the planted clique problem.

As described below Question 2, in Chapters 3, 4 we carefully define and establish an Overlap

Gap Property phase transition result for the high dimensional linear regression problem. In that

way we provide a possible explanation for the conjectured algorithmic hardness. This suggests

the following question which we study in Chapter 6.

Question 4: Is there an Overlap Gap Property phase transition explaining the conjectured

algorithmic hardness of recovering 𝒫𝒞 when 𝑘/
√
𝑛→ 0?

We provide strong evidence that the answer to the above question is affirmative. We consider

the landscape of the dense subgraphs of the observed graph, that is subgraphs with nearly

maximal number of edges. We study their possible intersection sizes ( "overlaps" ) with the

planted clique. Using the first moment method, as an non-rigorous approximation technique, we

provide evidence of a phase transition for the presence of Overlap Gap Property (OGP) exactly

at the algorithmic threshold 𝑘 = Θ(
√
𝑛). More specifically, we say that OGP happens in the

landscape of dense subgraphs of the observed graph if any sufficiently dense subgraph has either

high or low overlap with the planted clique. We direct the reader to the Introduction of Chapter

6 for the the exact definition of OGP. We provide evidence that

∙ when 𝑘 = 𝑜 (
√
𝑛) OGP holds in the landscape of dense subgraphs, and

∙ when 𝑘 = 𝜔 (
√
𝑛) OGP does not hold in the landscape of dense subgraphs.
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We prove parts of the conjecture such as the presence of OGP when 𝑘 is a small positive power

of 𝑛 by using a conditional second moment method. We expect the complete proof of the

conjectured OGP phase transition to be a challenging but important part towards understanding

the algorithmic difficulty of the planted clique problem.

1.4 Technical Contributions

Various technical results are established towards proving the results presented in Section 1.3. In

this Section, we describe two of the key technical results obtained towards establishing two of

the most important results presented in this thesis: the presence of the Overlap Gap Property

for the high dimensional linear regression mode (Chapter 3) and for the planted clique model

(Chapter 6). The results are of fundamental nature and can be phrased independently from the

Overlap Gap Property or any statistical context, and are of potential independent mathematical

interest.

The Gaussian Closest Vector Problem

In Chapter 3 and the study of the Overlap Gap Property for the high dimensional linear regression

model the following random geometry question naturally arises.

Let 𝑛, 𝑝 ∈ N and ℬ := {𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘} the set of all binary 𝑘-sparse vectors in R𝑝.

Suppose 𝑋 ∈ R𝑛×𝑝 has i.i.d. 𝒩 (0, 1) entries and 𝑌 ∈ R𝑛×𝑝 has i.i.d. 𝒩 (0, 𝜎2) entries. We would

like to understand the asymptotic behavior of the following minimization problem,

min
𝛽∈ℬ

𝑛−1/2‖𝑌 −𝑋𝛽‖2 (1.5)

subject to specific scaling of 𝜎2, 𝑘, 𝑛, 𝑝 as they grow together to infinity. In words, (1.5) estimates

how well some vector of the form 𝑋𝛽, 𝛽 ∈ ℬ approximate in (rescaled) ℓ2 error a target vector

𝑌 .

The focus is on 𝜎2 = Θ(𝑘), which makes the per-coordinate variance of 𝑌 , which equals to

𝜎2, comparable with the per-coordinate variance of 𝑋𝛽, which equals 𝑘. Studying the extrema

of Gaussian processes, such as (1.5), has a vast literature in probability theory and the develop-
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ment of fundamental tools such as Slepian’s, Sudakov-Fernique and Gordon’s inequalities [Ver18,

Section 7.2], with multiple applications in spin glass theory [Tal10], compressed sensing [OTH13]

and in information theory [ZTP19, TZP19]. The problem can also be motivated in statistics as

an "overfitting test"; it corresponds to the fundamental limits of fitting a sparse binary linear

model to an independent random vector of observations.

Now if 𝑛 = Ω
(︀
𝑘 log 𝑝

𝑘

)︀
then a well-studied random matrix property, called the Restricted

Isometry Property (RIP) is known to hold for the random matrix 𝑋. The RIP states that for any

𝑘-sparse vector 𝑣, it holds 𝑛−1/2‖𝑋𝑣‖2 ≈ ‖𝑣‖2 with probability tending to one as 𝑛, 𝑝, 𝑘 → +∞
(see e.g. [FR13, Chapter 6]). Here and everywhere in this Section, the approximation sign should

be understood as equality up to a multiplicative constant. Now, if 𝑛 = Ω
(︀
𝑘 log 𝑝

𝑘

)︀
, using the

RIP and 𝜎2 = Θ(𝑘) it is a relatively straightforward exercise that

min
𝛽∈ℬ

𝑛−1/2‖𝑌 −𝑋𝛽‖2 ≈
√
𝑘 + 𝜎2, (1.6)

as 𝑛, 𝑝, 𝑘 → +∞. Here
√
𝑘 + 𝜎2 simply corresponds to the variance per coordinate of any vector

of the form 𝑌 −𝑋𝛽 for 𝛽 ∈ ℬ.

On the other hand, when 𝑛 = 𝑜
(︀
𝑘 log 𝑝

𝑘

)︀
𝑋 is known not to satisfy RIP and to the best of our

knowledge no other tool provides tight results for the value of the optimization problem (1.5).

In Chapter 3 we study the following question:

Question: Which value does (1.5) concentrate on when 𝑛 = 𝑜
(︀
𝑘 log 𝑝

𝑘

)︀
?

We answer this question under the assumption that 𝑛 satisfies 𝑛 ≤ 𝑐𝑘 log 𝑝
𝑘

for some small

constant 𝑐 > 0 but also 𝑘 log 𝑘 ≤ 𝑛. Notice that naturally restricts 𝑘 to be at most 𝑝
𝑐

1+𝑐 for the

small constant 𝑐 > 0. We show under these assumptions that

min
𝛽∈ℬ

𝑛−1/2‖𝑌 −𝑋𝛽‖2 ≈
√
𝑘 + 𝜎2 exp

(︂
−𝑘 log

𝑝
𝑘

𝑛

)︂
,

as 𝑛, 𝑝, 𝑘 → +∞. Comparing with (1.6) we see that the behavior of (1.5) in the regime 𝑛 =

𝑜
(︀
𝑘 log 𝑝

𝑘

)︀
differs from the regime 𝑛 = Ω

(︀
𝑘 log 𝑝

𝑘

)︀
by an exponential factor in −𝑘 log 𝑝

𝑘

𝑛
. The exact

statement and proof of the above result can be found in Section 3.3 of Chapter 3.
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The Densest Subgraph Problem in Erdős-Rényi random graphs

In Chapter 6 and the study of the Overlap Gap Property for the planted clique model the following

random graph theory question naturally arises. Consider an 𝑛-vertex undirected graph𝐺 sampled

from the Erdős-Rényi model 𝐺
(︀
𝑛, 1

2

)︀
, that is each edge appears independently with probability

1
2
. We would like to understand the concentration properties of the 𝐾-Densest subgraph problem,

𝑑ER,𝐾(𝐺) = max
𝐶⊆𝑉 (𝐺),|𝐶|=𝐾

|𝐸[𝐶]|, (1.7)

where 𝑉 (𝐺) denotes the set of vertices of 𝐺 and for any 𝐶 ⊆ 𝑉 (𝐺), 𝐸[𝐶] denotes the set of

induced edges in 𝐺 between the vertices of 𝐶. In words, (1.7) is the maximum number of edges

of a 𝐾-vertex subgraph of 𝐺.

The study of 𝑑ER,𝐾(𝐺) is an admittedly natural question in random graph theory which, to the

best of our knowledge, remains not well-understood even for moderately large values of 𝐾 = 𝐾𝑛.

It should be noted that this is in sharp contrast with other combinatorial optimization questions

in Erdős-Rényi graphs, such as the size of the maximum clique or the chromatic number, where

tight results are known [Bol85, Chapter 11].

We describe briefly the literature of the problem. For small enough values of 𝐾, specifically

𝐾 < 2 log2 𝑛, it is well-known that a clique of size 𝐾 exists and therefore 𝑑ER,𝐾(𝐺) =
(︀
𝐾
2

)︀
w.h.p.

as 𝑛→ +∞ [GM75]. On the other hand when 𝐾 = 𝑛, trivially 𝑑ER,𝐾(𝐺) follows Binom
(︀(︀

𝐾
2

)︀
, 1
2

)︀

and hence for any 𝛼𝐾 → +∞, 𝑑ER,𝐾(𝐺) =
1
2

(︀
𝐾
2

)︀
+ 𝑂 (𝐾𝛼𝐾) w.h.p. as 𝑛 → +∞. In Chapter 6

we study the following question:

Question: How does 𝑑ER,𝐾(𝐺) behave asymptotically when 2 log2 𝑛 ≤ 𝐾 = 𝑜 (𝑛)?

A recent result in the literature studies the case 𝐾 = 𝐶 log 𝑛 for 𝐶 > 2 [BBSV18] and

establishes (it is an easy corollary of the main result of [BBSV18]),

𝑑ER,𝐾(𝐺) = ℎ−1

(︂
log 2− 2 (1 + 𝑜 (1))

𝐶

)︂(︂
𝑘

2

)︂
, (1.8)

w.h.p. as 𝑛 → +∞. Here log is natural logarithm and ℎ−1 is the inverse of the (rescaled)

binary entropy ℎ : [1
2
, 0] → [0, 1] is defined by ℎ(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log 𝑥. Notice that

lim𝐶→+∞ ℎ−1
(︁
log 2− 2(1+𝑜(1))

𝐶

)︁
= 1

2
which means that the result from [BBSV18] agrees with the
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first order behavior of 𝑑ER,𝐾(𝐺) at " very large" 𝐾 such as 𝐾 = 𝑛.

In Chapter 6 we obtain results on the behavior of 𝑑ER,𝐾(𝐺) for any 𝐾 = 𝑛𝐶 , for 𝐶 ∈ (0, 1/2).

Specifically in Theorem 6.2.10 we show that for any 𝐾 = 𝑛𝐶 for 𝐶 ∈ (0, 1/2) there exists some

positive constant 𝛽 = 𝛽(𝐶) ∈ (0, 3
2
) such that

𝑑ER,𝐾(𝐺) = ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃(︂

𝐾

2

)︂
−𝑂

(︁
𝐾𝛽
√︀

log 𝑛
)︁

(1.9)

w.h.p. as 𝑛→ +∞.

First notice that as our result are established when 𝐾 is a power 𝑛 it does not apply in the

logarithmic regime. Nevertheless, it is in agreement with the result of of [BBSV18] since for

𝐾 = 𝐶 log 𝑛,
log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀ = (1 + 𝑜 (1))
𝐾 log

(︀
𝑛
𝐾

)︀

𝐾2

2

= (1 + 𝑜 (1))
2

𝐶
,

that is the argument in ℎ−1 of (1.9) converges to the argument in ℎ−1 of (1.8) at this scaling.

Finally, by Taylor expanding ℎ−1 around log 2 and using (1.9) we can identify the second

order behavior of 𝑑ER,𝐾(𝐺) for 𝐾 = 𝑛𝐶 , for 𝐶 ∈ (0, 1/2) to be,

𝑑ER,𝐾(𝐺) =
1

2

(︂
𝐾

2

)︂
+
𝐾

3
2

√︁
log
(︀
𝑛
𝐾

)︀

2
+ 𝑜

(︁
𝐾

3
2

)︁
,

w.h.p. as 𝑛→ +∞.

The exact statements and proofs of the above results can be found in Chapter 6.

1.5 Organization and Bibliographic Information

Most results described in this thesis have already appeared in existing publications, which we

briefly mention below.

Chapter 2 presents new results on the statistical limit of the high dimensional linear regres-

sion model. It presents an exact calculation of the statistical limit of the model, and reveals

a strong "all-to-nothing" information-theoretic phase transition of the model. The results of

this Chapter are included in the paper with title "The All-or-Nothing Phenomenon in Sparse

Linear Regression" which is joint work with Galen Reeves and Jiaming Xu and appeared in the
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Proceedings of the Conference on Learning Theory (COLT) 2019 [RXZ19].

Chapter 3 establishes the presence of the Overlap Gap Property in the conjectured hard

regime for high dimensional linear regression. This is based on the paper "High dimensional

linear regression with binary coefficients: Mean squared error and a phase transition" which is

joint work with David Gamarnik and appeared in the Proceedings of the Conference on Learning

Theory (COLT) 2017 [GZ17a].

Chapter 4 proves the absence of the Overlap Gap Property in the algorithmically easy regime

for high dimensional linear regression. Moreover, it shows the success of a greedy Local Search

method also in the easy regime. This is based on the paper "Sparse High Dimensional Linear

Regression: Algorithmic Barrier and a Local Search Algorithm" which is joint work with David

Gamarnik and is currently available as a preprint [GZ17b].

Chapter 5 offers a new computationally-efficient recovery method for noiseless high dimen-

sional linear regression using lattice basis reduction. The algorithm provably infers the hidden

vector even with access to only one sample. This is based on the paper "High dimensional

linear regression using Lattice Basis Reduction" which is joint work with David Gamarnik and

appeared in the Advances of Neural Information Processing Systems (NeurIPS) 2018 [GZ18].

Chapter 6 presents strong evidence that Overlap Gap Property for the planted clique model

appears exactly at the conjectured algorithmic hard regime for the model. It also offers a proof

of the presence of the Overlap Gap Property in a part of the hard regime. This is based on

the paper "The Landscape of the Planted Clique Problem: Dense Subgraphs and the Overlap

Gap Property" which is joint work with David Gamarnik and is currently available as a preprint

[GZ19].

Other papers by the author over the course of his PhD that are not included in this thesis

are [ZTP19, TZP19, LVZ17, MSZ18, LVZ18, BCSZ18].

38



Chapter 2

The Statistical Limit of High Dimensional

Linear Regression. An All-or-Nothing

Phase Transition.

2.1 Introduction

In this Chapter, we study the statistical, or information-theoretic, limits of the high-dimensional

linear regression problem (defined in Subsection 1.1.1) under the following assumptions. For

𝑛, 𝑝, 𝑘 ∈ N with 𝑘 ≤ 𝑝 and 𝜎2 > 0 we consider two independent matrices 𝑋 ∈ R𝑛×𝑝 and

𝑊 ∈ R𝑛×1 with 𝑋𝑖𝑗
i.i.d.∼ 𝒩 (0, 1) and 𝑊𝑖

i.i.d.∼ 𝒩 (0, 𝜎2), and observe

𝑌 = 𝑋𝛽* +𝑊, (2.1)

where 𝛽* is assumed to be uniformly chosen at random from the set {𝑣 ∈ {0, 1}𝑝 : ‖𝑣‖0 = 𝑘}
and independent of (𝑋,𝑊 ). The problem of interest is to recover 𝛽* given the knowledge of 𝑋

and 𝑌 . Our focus will be on identifying the minimal sample size 𝑛 for which the recovery is

information-theoretic possible.

The problem of recovering the support of a hidden sparse vector 𝛽* ∈ R𝑝 given noisy lin-

ear observations has been extensively analyzed in the literature, as it naturally arises in many

contexts including subset regression, e.g. [CH90], signal denoising, e.g. [CDS01], compressive
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sensing, e.g. [CT05], [Don06], information and coding theory, e.g. [JB12], as well as high dimen-

sional statistics, e.g. [?, Wai09b]. The assumptions of Gaussianity of the entries of (𝑋,𝑊 ) are

standard in the literature. Furthermore, much of the literature (e.g. [ASZ10], [NT18], [WWR10])

assumes a lower bound 𝛽*
min > 0 for the smallest magnitude of a nonzero entry of 𝛽*, that is

min𝑖:𝛽*
𝑖 ̸=0 |𝛽*

𝑖 | ≥ 𝛽*
min, as otherwise identification of the support of the hidden vector is in princi-

ple impossible. In this Chapter we adopt a simplifying assumption by focusing only on binary

vectors 𝛽*, similar to other papers in the literature such as [ASZ10], [GZ17a] and [GZ17b]. In

this case recovering the support of the vectors is equivalent to identifying the vector itself.

To judge the recovery performance we focus on the mean squared error (MSE) and specifically

the notions of weak and strong recovery introduced in Definition 1.3.1. The fundamental question

of interest in this Chapter is when 𝑛 as a function of (𝑝, 𝑘, 𝜎2) is such that strong/weak recovery

is information-theoretically possible. Obtaining a tight characterization of the statistical limit,

or the information-theoretic limit as it is also called, for these notions of recovery is the main

contribution of the work described in this Chapter. Note that here and for rest of the Chapter, to

avoid confusion of using them both, we stick with the term “information-theoretic limit" instead

of “statistical limit".

Towards identifying the information theoretic limits of recovering 𝛽*, and out of independent

interest, we also consider a closely related hypothesis testing problem, where the goal is to

distinguish the pair (𝑋, 𝑌 ) generated according to (2.1) from a model where both 𝑋 and 𝑌

are independently generated. More specifically, given two independent matrices 𝑋 ∈ R𝑛×𝑝 and

𝑊 ∈ R𝑛×1 with 𝑋𝑖𝑗
i.i.d.∼ 𝒩 (0, 1) and 𝑊𝑖

i.i.d.∼ 𝒩 (0, 𝜎2), we define

𝑌 , 𝜆𝑊, (2.2)

where 𝜆 > 0 is a scaling parameter. We refer to the Gaussian linear regression model (2.1) as the

planted model, denoted by 𝑃 = 𝑃 (𝑋, 𝑌 ), and (2.2) as the null model denoted by 𝑄𝜆 = 𝑄𝜆(𝑌,𝑋).

We focus on characterizing the total variation distance TV (𝑃,𝑄𝜆) for various values of 𝜆. One

choice of particular interest is 𝜆 =
√︀
𝑘/𝜎2 + 1, under which E

[︀
𝑌 𝑌 ⊤]︀ = (𝑘 + 𝜎2)I in both the

planted and null models.

Analogous to recovery definitions 1.3.1, we adopt the following two natural notions of test-

ing [PWB16, AKJ17].
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Definition 2.1.1 (Strong and weak detection). Fix two probability measures P,Q on our observed

data (𝑌,𝑋). We say a test statistic 𝒯 (𝑋, 𝑌 ) with a threshold 𝜏 achieves

∙ strong detection if

lim sup
𝑝→∞

[P(𝒯 (𝑋, 𝑌 ) < 𝜏) +Q(𝒯 (𝑋, 𝑌 ) ≥ 𝜏)] = 0,

∙ weak detection, if

lim sup
𝑝→∞

[P(𝒯 (𝑋, 𝑌 ) < 𝜏) +Q(𝒯 (𝑋, 𝑌 ) ≥ 𝜏)] < 1.

Note that strong detection asks for the test statistic to determine with high probability

whether (𝑋, 𝑌 ) is drawn from P or Q, while weak detection, similar to weak recovery, only asks

for the test statistic to strictly outperform the random guess. Recall that

inf
𝒯 ,𝜏

[P(𝒯 (𝑋, 𝑌 ) < 𝜏) +Q(𝒯 (𝑋, 𝑌 ) ≥ 𝜏)] = 1− TV(𝑃,𝑄).

Thus equivalently, strong detection is possible if and only if lim inf𝑝→∞TV(P,Q) = 1, and weak

detection is possible if and only if lim inf𝑝→∞TV(P,Q) > 0. The fundamental question of interest

is when 𝑛 as a function of (𝑝, 𝑘, 𝜎2) is such that strong/weak detection is information-theoretically

possible.

2.1.1 Contributions

Of fundamental importance is the following sample size:

𝑛info ,
2𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)
. (2.3)

We establish that 𝑛info is a sharp phase transition point for the recovery of 𝛽* when 𝑘 = 𝑜(
√
𝑝)

and the signal to noise ratio 𝑘/𝜎2 is above a sufficiently large constant. In particular, for an

arbitrarily small but fixed constant 𝜖 > 0, when 𝑛 < (1 − 𝜖)𝑛info, weak recovery is impossible,

but when 𝑛 > (1 + 𝜖)𝑛info, strong recovery is possible. This implies that the rescaled MMSE

undergoes a jump from 1 to 0 at 𝑛info samples up to a small window of size 𝜖𝑛.
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We state this in the following Theorem, which summarizes the Theorems 2.2.3, 2.2.4, 2.2.5

and 2.2.6 from the main body of the Chapter.

Theorem (All-or-Nothing Phase Transition). Let 𝛿 ∈ (0, 1
2
) and 𝜖 ∈ (0, 1) be two arbitrary but

fixed constants. Then there exists a constant 𝐶(𝛿, 𝜖) > 0 only depending only 𝛿 and 𝜖, such that

if 𝑘/𝜎2 ≥ 𝐶(𝛿, 𝜖), then

∙ When 𝑘 ≤ 𝑝
1
2
−𝛿 and

𝑛 < (1− 𝜖)𝑛info,

both weak recovery of 𝛽* from (𝑌,𝑋) ∼ 𝑃 and weak detection between 𝑃 and 𝑄𝜆0 are

information-theoretically impossible, where 𝜆0 =
√︁

𝑘
𝜎2 + 1.

∙ When 𝑘 = 𝑜(𝑝) and

𝑛 > (1 + 𝜖)𝑛info,

both strong recovery of 𝛽* from (𝑌,𝑋) ∼ 𝑃 and (†) strong detection between 𝑃 and 𝑄𝜆 are

information-theoretically possible for any 𝜆 > 0.

(†): strong detection requires an additional assumption 1+𝑘/𝜎2 ≤ (𝑘 log (𝑝/𝑘))1−𝜂 for some

arbitrarily small but fixed constant 𝜂 > 0.

Note that the theorem above assumes 𝜎 > 0. In the extreme case where 𝜎 = 0, 𝑛info trivializes

to zero and we can directly argue that one sample suffices for strong recovery. In fact, for any

𝛽* ∈ {0, 1}𝑝 and 𝑌1 = ⟨𝑋1, 𝛽
*⟩ for 𝑋1 ∼ 𝒩 (0, I𝑝), we can identify 𝛽* as the unique binary-valued

solution of 𝑌1 = ⟨𝑋1, 𝛽
*⟩, almost surely with respect to the randomness of 𝑋 (see e.g. [GZ18])

Note that the first part of the above result focuses on 𝑘 ≤ 𝑝1/2−𝛿. It turns out that this is

not a technical artifact and 𝑘 = 𝑜
(︀
𝑝1/2

)︀
is needed for 𝑛info to be the weak detection sample size

threshold. More details can be found in 2.9. The sharp information-theoretic threshold for either

detection or recovery is still open when 𝑘 = Ω
(︀
𝑝1/2

)︀
and 𝑘 = 𝑜(𝑝).

The phase transition role of 𝑛info According to our main result, the rescaled minimum mean

squared error of the problem, MMSE/MSE0, exhibits a step behavior asymptotically. Loosely

speaking, when 𝑛 < 𝑛info it equals to one and when 𝑛 > 𝑛info it equals to zero. We next intuitively

explain why such a step behavior for sparse high dimensional regression occurs at 𝑛info, using ideas
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related to the area theorem. The area theorem has been used in the channel coding literature to

study the MAP decoding threshold [MMU08] and the capacity-achieving codes [KKM+17]. The

approach described below is similar to the one used previously for linear regression [RP16].

First let us observe that 𝑛info is asymptotically equal to the ratio of entropy 𝐻(𝛽*) = log
(︀
𝑝
𝑘

)︀

and Gaussian channel capacity 1
2
log(1+𝑘/𝜎2). We explore this coincidence in the following way.

Let 𝐼𝑛 , 𝐼(𝑌 𝑛
1 ;𝑋, 𝛽

*) denote the mutual information between 𝛽* and (𝑌 𝑛
1 ;𝑋) with a total of

𝑛 linear measurements. Since the mutual information in the Gaussian channel under a second

moment constraint is maximized by the Gaussian input distribution, it follows that the increment

of mutual information 𝐼𝑛+1 − 𝐼𝑛 ≤ 1
2
log(1 +MMSE𝑛/𝜎

2), where MMSE𝑛 denotes the minimum

MSE with 𝑛 measurements. In particular, all the increments are between zero and 1
2
log(1+𝑘/𝜎2)

and by telescopic summation for any 𝑛:

𝐼𝑛 ≤ 𝑛

2
log(1 + 𝑘/𝜎2), (2.4)

with equality only if for all 𝑚 < 𝑛, MMSE𝑚 = 𝑘. This is illustrated in Figure 2-1 where we plot

𝑛 against 𝐼𝑛+1 − 𝐼𝑛.

Suppose now that we have established that strong recovery is achieved with 𝑛info =
𝐻(𝛽*)

1
2
log(1+𝑘/𝜎2)

samples.

Then strong recovery and standard identities connecting mutual information and entropy

implies that

𝐼𝑛info
= 𝐻(𝛽*) =

𝑛info

2
log(1 + 𝑘/𝜎2).

In particular, (2.4) holds with equality, which means for all 𝑛 ≤ 𝑛info − 1, MMSE𝑛 = 𝑘. In par-

ticular, for all 𝑛 < 𝑛info, weak recovery is impossible. This area theorem is the key underpinning

our converse proof of the weak recovery.

2.1.2 Comparison with Related Work

The information-theoretic limits of high-dimensional sparse linear regression have been studied

extensively and there is a vast literature of multiple decades of research. In this section we focus

solely on the Gaussian and binary setting and furthermore on the results applying to high values

of signal to noise ratio and sublinear sparsity.
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Figure 2-1: The phase transition diagram in Gaussian sparse linear regression. The 𝑦-axis is
the increment of mutual information with one additional measurement. The area of blue region
equals the entropy 𝐻(𝛽*) ∼ 𝑘 log(𝑝/𝑘). Here by 𝑛* we denote the 𝑛info.

Information-theoretic Negative Results for weak/strong recovery For the impossibil-

ity direction, previous work [ASZ10, Theorem 5.2] has established that as 𝑝 → ∞, achieving

MSE(𝛽*) ≤ 𝑑 for any 𝑑 ∈ [0, 𝑘] is information-theoretically impossible if

𝑛 ≤ 2𝑝
ℎ2(𝑘/𝑝)− ℎ2(𝑑/𝑝)

log (1 + 𝑘/𝜎2)
,

where ℎ2(𝛼) = −𝛼 log𝛼 − (1 − 𝛼) log(1 − 𝛼) for 𝛼 ∈ [0, 1] is the binary entropy function.

This converse result is proved via a simple rate-distortion argument (see, e.g. [WX18] for an

exposition). In particular, given any estimator 𝛽*(𝑋, 𝑌 ) with MSE(𝛽*) ≤ 𝑑, we have

𝑝 (ℎ2(𝑘/𝑝)− ℎ2(𝑑/𝑝)) ≤ inf
MSE(𝛽*)≤𝑑

𝐼(𝛽*; 𝛽*) ≤ 𝐼(𝛽*; 𝛽*) ≤ 𝐼(𝑋, 𝑌 ; 𝛽*) ≤ 𝑛

2
log
(︀
1 + 𝑘/𝜎2

)︀
.

Notice that since 𝑘 = 𝑜(𝑝) the result implies that if 𝑛 ≤ (1− 𝑜 (1))𝑛info, strong recovery, that

is 𝑑 = 𝑜(𝑘), is information-theoretically impossible and if 𝑛 = 𝑜(𝑛info), weak recovery, that is

𝑑 ≤ (1− 𝜖)𝑘 for an arbitrary 𝜖 ∈ (0, 1), is impossible.

More recent work [SC17, Corollary 2] further quantified the fraction of support that can be

recovered when 𝑛 < (1− 𝜖)𝑛info for some fixed constant 𝜖 > 0. Specifically with 𝑘 = 𝑜(𝑝) and any
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scaling of 𝑘/𝜎2, if 𝑛 < (1− 𝜖)𝑛info, then the fraction of the support of 𝛽* that can be recovered

correctly is at most 1− 𝜖 with high probability; thus strong recovery is impossible.

Restricting to the Maximum Likelihood Estimator (MLE) performance of the problem, it is

shown in [GZ17a] that under significantly small sparsity 𝑘 = 𝑂
(︀
exp

(︀√
log 𝑝

)︀)︀
and 𝑘/𝜎2 → +∞,

if 𝑛 ≤ (1 − 𝜖)𝑛info, the MLE not only fails to achieve strong recovery, but also fails to weakly

recover the vector, that is recover correctly any positive constant fraction of the support.

Our result (Theorem 2.2.4) establishes that the MLE performance is fundamental. It improves

upon the negative results in the literature by identifying a sharp threshold for weak recovery,

showing that if 𝑘 = 𝑜
(︀√

𝑝
)︀
, 𝑘/𝜎2 ≥ 𝐶 for some large constant 𝐶 > 0, and 𝑛 ≤ (1− 𝜖)𝑛info, then

weak recovery is information-theoretically impossible by any estimator 𝛽*(𝑌,𝑋). In other words,

no constant fraction of the support is recoverable under these assumptions.

Information-theoretic Positive Results for weak/strong recovery In the positive di-

rection, previous work [AT10, Theorem 1.5] shows that when 𝑘 = 𝑜(𝑝), 𝑘/𝜎2 = Θ(1), and

𝑛 > 𝐶𝑘/𝜎2𝑘 log(𝑝 − 𝑘) for some 𝐶𝑘/𝜎2 , it is information theoretically possible to weakly recover

the hidden vector.

Albeit very similar to our results, our positive result (Theorem 2.2.5) identifies the ex-

plicit value of 𝐶𝑘/𝜎2 for which both weak and strong recovery are possible, that is 𝐶𝑘/𝜎2 =

2/ log (1 + 𝑘/𝜎2) for which 𝐶𝑘/𝜎2𝑘 log(𝑝/𝑘) = 𝑛info.

In [GZ17a] it is shown that when 𝑘 = 𝑂
(︀
exp

(︀√
log 𝑝

)︀)︀
and 𝑘/𝜎2 → +∞ then if 𝑛 ≥ (1+𝜖)𝑛info

for some fixed 𝜖 > 0, strong recovery is achieved by the MLE of the problem. We improve upon

this result with Theorem 2.2.5 by showing that when 𝑛 ≥ (1 + 𝜖)𝑛info for some fixed 𝜖 > 0 and

any 𝑘 ≤ 𝑐𝑝 for some 𝑐 > 0, then there exists a constant 𝐶 > 0 such that 𝑘/𝜎2 ≥ 𝐶 the MLE

achieves strong recovery. In particular, we significantly relax the assumption from [GZ17a] by

showing that MLE achieves strong recovery with (1 + 𝜖)𝑛info samples for (1) any sparsity level

less than 𝑐𝑝 and (2) finite but large values of signal to noise ratio.

Exact asymptotic characterization of MMSE for linear sparsity For both weak and

strong recovery, the central object of interest is the MMSE E [‖𝛽* − E [𝛽* | 𝑋, 𝑌 ] ‖2] and its

asymptotic behavior. While the asymptotic behavior of the MMSE remains a challenging open

problem when 𝑘 = 𝑜(𝑝), it has been accurately understood when 𝑘 = Θ(𝑝) and 𝑘/𝜎2 = Θ(1).
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To be more specific, consider the asymptotic regime where 𝑘 = 𝜀𝑝, 𝜎2 = 𝑘/𝛾, and 𝑛 = 𝛿𝑝,

for fixed positive constants 𝜀, 𝛾, 𝛿 as 𝑝 → +∞. The asymptotic minimum mean-square error

(MMSE) can be characterized explicitly in terms of (𝜀, 𝛾, 𝛿).

This characterization was first obtained heuristically using the replica method from statistical

physics [Tan02, GV05] and later proven rigorously [RP16, BDMK16]. More specifically, for fixed

(𝜀, 𝛾), let the asymptotic MMSE as a function of 𝛿 be defined by

ℳ𝜀,𝛾(𝛿) = lim
𝑝→∞

E [‖𝛽* − E [𝛽* | 𝑋, 𝑌 ] ‖2]
E [‖𝛽* − E [𝛽*] ‖2] .

The results in [RP16, BDMK16] lead to an explicit formula for ℳ𝜀,𝛾(𝛿). Furthermore, they show

that for 𝜀 ∈ (0, 1) and all sufficiently large 𝛾 ∈ (0,∞), ℳ𝜀,𝛾(𝛿) has a jump discontinuity as a

function of 𝛿. The location of this discontinuity, denoted by 𝛿* = 𝛿*(𝜀, 𝛾), occurs at a value that

is strictly greater than the threshold 𝑛info/𝑝.

Furthermore, at the the discontinuity, the MMSE transitions from a value that is strictly less

than the MMSE without any observations to a value that is strictly positive, i.e., ℳ𝜀,𝛾(0) >

lim𝛿↑𝛿* ℳ𝜀,𝛾(𝛿) > lim𝛿↓𝛿* ℳ𝜀,𝛾(𝛿) > 0.

To compare these formulas to the sub-linear sparsity studied in this Chapter, one can consider

the limiting behavior of ℳ𝜀,𝛾(𝛿) as 𝜀 decreases to zero. It can be verified that ℳ𝜀,𝛾(𝛿) converges

indeed to a step zero-one function as 𝜀 → 0 and the jump discontinuity transfers indeed to the

critical value 𝑛info/𝑝 which makes the behavior consistent with the results in this Chapter.

However, an important difference is that the results in this Chapter are derived directly under

the scaling regime 𝑘 = 𝑜(𝑝) whereas the derivation described above requires one to first take the

asymptotic limit 𝑝→ ∞ for fixed (𝜖, 𝛾) and then take 𝜖→ 0. Since the limits cannot interchange

in any obvious way, the results in this Chapter cannot be derived as a consequence of the rigorous

results in [RP16, BDMK16]. Finally, it should be mentioned that taking the limit 𝜖→ 0 for the

replica prediction suggests the step behavior for all values of signal-to-noise ratio 𝛾 (see Figures

2-2, 2-3). In this Chapter, the step behavior is rigorously proven in the high signal-to-noise ratio

regime. The proof of the step behavior when the signal-to-noise ratio is low remains an open

problem.
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Figure 2-2: The limit of the replica-symmetric predicted MMSE ℳ𝜀,𝛾(·) as 𝜖 → 0 for signal to
noise ratio (snr) 𝛾 equal to 2. Here by 𝑛* we denote the 𝑛info.

Sparse Superposition Codes Constructing an algorithm for recovering a binary 𝑘-sparse 𝛽*

from (𝑌 = 𝑋𝛽* +𝑊,𝑋) receives a lot of attention from a coding theory point of view. The

reason is that such recovery corresponds naturally to a code for the memoryless additive Gaussian

white noise (AWGN) channel with signal-to-noise ratio equal to 𝑘/𝜎2. Specifically in this context

achieving strong recovery of a uniformly chosen binary 𝑘-sparse 𝛽* with (1 + 𝜖)𝑛info samples,

for arbitrary 𝜖 > 0, corresponds exactly to capacity-achieving encoding-decoding mechanism

of
(︀
𝑝
𝑘

)︀
∼ (𝑝𝑒/𝑘)𝑘 messages through a AWGN channel. A recent line of work has analyzed

a similar mechanism where (𝑝/𝑘)𝑘 messages are encoded through 𝑘-block-sparse vectors; that

is the vector 𝛽* is designed to have at most one non-zero value in each of 𝑘 block of entries

indexed by 𝑖⌊𝑝/𝑘⌋, 𝑖⌊𝑝/𝑘⌋ + 1, · · · , (𝑖 + 1)⌊𝑝/𝑘⌋ − 1 for 𝑖 = 0, 1, 2, . . . , 𝑘 − 1. It has shown that

by using various polynomial-time decoding mechanisms, such as adaptive successive decoding

[JB12], [JB14], a soft-decision iterative decoder [BC12], [Cho14] and finally Approximate Message

Passing techniques [RGV17], one can strongly recover the hidden 𝑘-block-sparse vector with

(1+ 𝜖)𝑛info samples and achieve capacity. Their techniques are tailored to work for any 𝑘 = 𝑝1−𝑐
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Figure 2-3: The limit of the replica-symmetric predicted MMSE ℳ𝜀,𝛾(·) as 𝜖 → 0 for signal to
noise ratio (snr) 𝛾 equal to 10. Here by 𝑛* we denote the 𝑛info.

with 𝑐 ∈ (0, 1) and also require the vector to have carefully chosen non-zero entries, that is the

hidden vector is not assumed to simply be binary. In this work Theorem 2.2.5 establishes that

under the simple assumption on 𝛽* being binary and arbitrarily (not block) 𝑘-sparse it suffices

to make strong recovery possible with (1 + 𝜖)𝑛info samples when 𝑘 = 𝑜(𝑝). Nevertheless, our

decoding mechanism requires a search over the space of 𝑘-sparse binary vectors and therefore is

not in principle polynomial-time. The design of a polynomial-time recovery algorithm for this

task and (1 + 𝜖)𝑛info samples remains largely an open problem (see [GZ17a]).

Information-theoretic limits up to constant factors for exact recovery Although exact

recovery is not our focus, we briefly mention some of the rich literature on the information-

theoretic limits for the exact recovery of 𝛽*, i.e., P
{︁
𝛽* = 𝛽*

}︁
→ 1 as 𝑝 → ∞ (see, e.g. [?,

FRG09, Rad11, WWR10, NT18] and the references therein). Clearly since exact recovery implies

weak and strong recovery, the sample sizes required to be achieve exact recovery are in principle

no smaller than 𝑛info.
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Specifically, it has been shown in [?, Theorem 1] that the maximum likelihood estimator

achieves exact recovery if 𝑛 ≥ Ω
(︀
log
(︀
𝑝−𝑘
𝑘

)︀
+ 𝜎2 log(𝑝− 𝑘)

)︀
and 𝑛 − 𝑘 → +∞. Conversely, 𝑛 >

max{𝑓1(𝑝, 𝑘), . . . , 𝑓𝑘(𝑝, 𝑘), 𝑘} is shown in [WWR10, Theorem 1] to be necessary for exact recovery,

where 𝑓𝑚(𝑝, 𝑘) = 2
log (𝑝−𝑘+𝑚

𝑚 )−1

log(1+𝑚(𝑝−𝑘)
𝑝−𝑘+𝑚

/𝜎2)
. In the special regime where 𝑘 and 𝜎 are fixed constants, it has

been shown in [JKR11, Theorem 1] that exact recovery is information-theoretically possible if

and only if 𝑛 ≥ (1 + 𝑜(1))𝑛info. Notice that this result achieves exact recovery for approximately

𝑛info sample size, but in this case of constant 𝑘 it can be easily seen that the two notions of exact

and strong recovery coincide.

Computationally, it has been shown in [Wai09b, Section IV-B] that LASSO achieves exact

recovery in polynomial-time if 𝑛 ≥ 2𝑘 log(𝑝− 𝑘). More recently, it is shown in [NT18, Theorem

3.2, Corollary 3.2] that exact recovery can be achieved in polynomial-time, provided that 𝑘 =

𝑜(𝑝), 𝜎 ≥
√
3, and 𝑛 ≥ Ω

(︀
𝑘 log 𝑒𝑝

𝑘
+ 𝜎2 log 𝑝

)︀
.

2.1.3 Proof Techniques

In this section, we give an overview of our proof techniques. Given two probability distributions

𝑃,𝑄 with 𝑃 absolutely continuous to 𝑄 and any convex function 𝑓 such that 𝑓(1) = 0, the

𝑓 -divergence of 𝑄 from 𝑃 is given by

𝐷𝑓 (𝑃‖𝑄) , Exp𝑄

[︂
𝑓

(︂
𝑑𝑃

𝑑𝑄

)︂]︂
.

Three choices of 𝑓 are of particular interests (See [PW15, Section 6] for details):

∙ The Total Variation distance TV(𝑃,𝑄): 𝑓(𝑥) = |𝑥− 1|/2;

∙ The Kullback-Leibler divergence (a.k.a. relative entropy) 𝐷(𝑃‖𝑄) : 𝑓(𝑥) = 𝑥 log 𝑥;

∙ The 𝜒2-divergence 𝜒2(𝑃‖𝑄): 𝑓(𝑥) = (𝑥− 1)2.

Note that the 𝜒2-divergence 𝜒2(𝑃‖𝑄) is equal to the variance of the Radon-Nikodym derivative

(likelihood ratio) 𝑑𝑃/𝑑𝑄 under 𝑄 and hence

𝜒2(𝑃‖𝑄) + 1 = Exp𝑄

[︃(︂
𝑑𝑃

𝑑𝑄

)︂2
]︃
= Exp𝑃

[︂
𝑑𝑃

𝑑𝑄

]︂
.
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A key to our proof is the following chain of inequalities:

TV(𝑃,𝑄) ≤
√︀

2𝐷(𝑃 ||𝑄) ≤
√︀

2 log (𝜒2(𝑃‖𝑄) + 1), (2.5)

where the first inequality is simply Pinsker’s inequality, and the second inequality holds by

Jensen’s inequality:

𝐷(𝑃‖𝑄) = Exp𝑃

[︂
log

𝑑𝑃

𝑑𝑄

]︂
≤ log

(︂
Exp𝑃

[︂
𝑑𝑃

𝑑𝑄

]︂)︂
= log

(︀
𝜒2(𝑃‖𝑄) + 1

)︀
. (2.6)

Recall that to show the weak detection between 𝑃 and 𝑄𝜆 is impossible, it is equivalent to

proving that TV (𝑃,𝑄𝜆) = 𝑜(1). In view of (2.5) there is a natural strategy towards proving

it: it suffices to prove that 𝜒2(𝑃,𝑄𝜆) = 𝑜 (1), which amounts to showing the second moment

Exp𝑄 [(𝑑𝑃/𝑑𝑄𝜆)
2] = 1 + 𝑜 (1). We prove that indeed if 𝑛 ≤ (1− 𝑜(1))𝑛info/2 and 𝜆 is appropri-

ately chosen, then this second moment is indeed 1+𝑜(1) (Theorem 2.2.1); however, if 𝑛 > 𝑛info/2,

then it blows up to infinity. This is because even if potentially TV(𝑃,𝑄𝜆) = 𝑜(1), rare events

can cause the second moment to explode and in particular (2.5) is far from being tight.

We are able to circumvent this difficulty by computing the second moment conditioned on

an event ℰ , which rules out the catastrophic rare ones. In particular, we introduce the following

conditioned planted model.

Definition 2.1.2 (Conditioned planted model). Given a subset ℰ ⊂ R𝑛×𝑝 × R𝑝, define the

conditioned planted model

𝑃ℰ(𝑋, 𝑌 ) =
Exp𝛽*

[︀
𝑃 (𝑋, 𝑌 | 𝛽*)1{ℰ}(𝑋, 𝛽*)

]︀

P {ℰ} . (2.7)

Using this notation we can write

𝑃 (𝑋, 𝑌 ) = (1− 𝜀)𝑃ℰ(𝑋, 𝑌 ) + 𝜀𝑃ℰ𝑐(𝑋, 𝑌 ),

where ℰ𝑐 denotes the complement of ℰ and 𝜀 = P {(𝑋, 𝛽*) ∈ ℰ𝑐}. By Jensen’s inequality and the
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convexity of KL-divergence,

𝐷(𝑃 ||𝑄𝜆) ≤ (1− 𝜀)𝐷(𝑃ℰ ||𝑄𝜆) + 𝜀𝐷(𝑃ℰ𝑐 ||𝑄𝜆). (2.8)

Under an appropriately chosen ℰ , and 𝜆 > 0, our main impossibility of detection result (The-

orem 2.2.3) shows that if 𝑛 ≤ (1+𝑜(1))𝑛info, then Exp𝑄𝜆
[(𝑑𝑃ℰ/𝑑𝑄𝜆)

2] = 1+𝑜(1), or equivalently,

𝜒2(𝑃ℰ‖𝑄𝜆) = 𝑜(1), which immediately implies that 𝐷(𝑃ℰ‖𝑄𝜆) = 𝑜(1) and TV(𝑃ℰ , 𝑄𝜆) = 𝑜(1).

Finally, we argue that 𝜀 converges to 0 sufficiently fast so that according to (2.8), TV(𝑃,𝑄𝜆) ≤
TV(𝑃ℰ , 𝑄) + 𝑜(1) = 𝑜(1) and 𝐷(𝑃‖𝑄𝜆) ≤ 𝐷(𝑃ℰ‖𝑄𝜆) + 𝑜(1) = 𝑜(1).

We remark that this (conditional) second moment method for providing detection lower

bound has been used in many high-dimensional inference problems (see e.g. [MNS15, BMV+18,

BMNN16, PWB16, WX18] and references therein).

To further show weak recovery is impossible in the regime for sample size 𝑛 < 𝑛info (Theorem

2.2.4), we establish a lower bound of MSE in terms of 𝐷(𝑃‖𝑄𝜆) (Lemma 2.4.1) which implies

that the minimum MSE needs to be (1− 𝑜(1)) 𝑘 if 𝐷(𝑃‖𝑄𝜆) = 𝑜(𝑛). The key underpinning our

lower bound proof is the area theorem [MMU08, KKM+17].

2.1.4 Notation and Organization

Denote the identity matrix by I. We let ‖𝑋‖ denote the spectral norm of a matrix 𝑋 and ‖𝑥‖
denote the ℓ2 norm of a vector 𝑥. For any positive integer 𝑛, let [𝑛] = {1, . . . , 𝑛}. For any set

𝑇 ⊂ [𝑛], let |𝑇 | denote its cardinality and 𝑇 𝑐 denote its complement. We use standard big 𝑂

notations, e.g., for any sequences {𝑎𝑝} and {𝑏𝑝}, 𝑎𝑝 = Θ(𝑏𝑝) if there is an absolute constant

𝑐 > 0 such that 1/𝑐 ≤ 𝑎𝑝/𝑏𝑝 ≤ 𝑐; 𝑎𝑝 = Ω(𝑏𝑝) or 𝑏𝑝 = 𝑂(𝑎𝑝) if there exists an absolute constant

𝑐 > 0 such that 𝑎𝑝/𝑏𝑝 ≥ 𝑐. We say a sequence of events ℰ𝑝 indexed by a positive integer

𝑝 holds with high probability, if the probability of ℰ𝑝 converges to 1 as 𝑝 → +∞. Without

further specification, all the asymptotics are taken with respect to 𝑝 → ∞. All logarithms

are natural and we use the convention 0 log 0 = 0. For two real numbers 𝑎 and 𝑏, we use

𝑎∨ 𝑏 = max{𝑎, 𝑏} to denote the larger of 𝑎 and 𝑏. For two vectors 𝑢, 𝑣 of the same dimension, we

use ⟨𝑢, 𝑣⟩ denote their inner product. We use 𝜒2
𝑛 denote the standard chi-squared distribution

with 𝑛 degrees of freedom. For 𝑛,𝑚, 𝑘 ∈ N with 𝑚 ≤ 𝑘 ≤ 𝑛 and 𝑚 + 𝑘 ≤ 𝑛 we denote
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by Hyp (𝑛,𝑚, 𝑘) the Hypergeometric distribution with parameters 𝑛,𝑚, 𝑘 and probability mass

function 𝑝(𝑠) =
(︀
𝑚
𝑠

)︀(︀
𝑛−𝑚
𝑘−𝑠

)︀
/
(︀
𝑛
𝑘

)︀
, 𝑠 ∈ [0,𝑚] ∩ Z.

The remainder of the Chapteris organized as follows. Section 2.2 presents the main results

without proofs. Section 2.3 and Section 2.4 prove the negative results for detection and recovery,

respectively. Section 2.5 proves the positive results for detection and recovery. We conclude the

Chapter in Section 2.6, mentioning a few open problems. Auxiliary lemmata and miscellaneous

details are left to rest Sections.

2.2 Main Results

In this section we present our main results. The proofs are deferred to the following sections.

2.2.1 Impossibility of Weak Detection with 𝑛 < 𝑛info

Our first impossibility detection result is based on a direct calculation of the second moment

between the planted model 𝑃 and the null model 𝑄𝜆. Specifically, we are able to show that weak

detection between the two models is impossible, if 𝑛 ≤ (1 − 𝛼)𝑛info/2 for some 𝛼 = 𝑜𝑝(1) and

𝜆 =
√︀
𝑘/𝜎2 + 1.

Theorem 2.2.1. Suppose 𝑘 ≤ 𝑝1/2−𝛿 for a fixed constant 𝛿 > 0 and 𝑘/𝜎2 ≥ 𝐶 for a sufficiently

large constant 𝐶 only depending on 𝛿.

If

𝑛 ≤ 1

2

(︂
1− log log (𝑝/𝑘)

log (𝑝/𝑘)

)︂
𝑛info, (2.9)

then for 𝜆0 =
√︀
𝑘/𝜎2 + 1, it holds that

𝜒2(𝑃‖𝑄𝜆0) = 𝑜(1)

Furthermore, 𝐷(𝑃‖𝑄𝜆0) = 𝑜(1) and TV(𝑃,𝑄𝜆0) = 𝑜(1).

The complete proof of the above Theorem can be found in Section 2.3.1. Nevertheless, let

us provide here a short proof sketch. Using an explicit calculation, we first find that for any
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𝜆 >
√︀
𝑘/𝜎2 + 1/2,

𝜒2 (𝑃‖𝑄𝜆) = 𝜆2𝑛 Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
2𝜆2 − 1− 𝑘 + 𝑆

𝜎2

)︂−𝑛/2(︂
1 +

𝑘 − 𝑆

𝜎2

)︂−𝑛/2
]︃
− 1

where 𝑆 = ⟨𝛽*, (𝛽*)′⟩ is the overlap between two independent copies 𝛽*, (𝛽*)′ and follows a

Hypergeometric distribution with parameters (𝑝, 𝑘, 𝑘). Plugging in 𝜆 = 𝜆0 =
√︀
𝑘/𝜎2 + 1, we get

that

𝜒2(𝑃‖𝑄𝜆0) = Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛
]︃
− 1.

Using this we show that if 𝑛 ≤ (1 + 𝑜(1))𝑛info/2, then 𝜒2(𝑃‖𝑄𝜆0) is indeed 𝑜 (1), implying by

(2.5) the impossibility result. However, if 𝑛 > 𝑛info/2, then this 𝜒2-divergence can be proven to

blow up to infinity, rendering the method based on (2.5) uninformative in this regime. To see

this, by considering the event 𝑆 = 𝑘 which happens with probability 1/
(︀
𝑝
𝑘

)︀
, we get that

𝜒2(𝑃‖𝑄𝜆0) ≥
1(︀
𝑝
𝑘

)︀
[︃(︂

1− 𝑘

𝑘 + 𝜎2

)︂−𝑛
]︃
− 1 = exp

(︂
𝑛 log

(︂
1 +

𝑘

𝜎2

)︂
− log

(︂
𝑝

𝑘

)︂)︂
− 1. (2.10)

Recall that 𝑛info is asymptotically equal to 2 log
(︀
𝑝
𝑘

)︀
/ log

(︀
1 + 𝑘

𝜎2

)︀
. Hence if 𝑛 ≥ 𝑛info(1 + 𝜖)/2 for

some constant 𝜖 > 0, then 𝜒2(𝑃‖𝑄𝜆0) → +∞.

To be able to obtain tighter results and go all the way to 𝑛info sample size, we resort to a

conditional second moment method as explained in the proof techniques. Specifically we show

that weak detection is impossible for any 𝑛 ≤ (1 − 𝛼)𝑛info, for some 𝛼 > 0 that can be made

to be arbitrarily small by increasing 𝑘/𝜎2 and 𝑝/𝑘. In particular, this improves on the direct

calculation of the 𝜒2 distance by a multiplicative factor of 2 and shows that 𝑛info is a sharp

information theoretic threshold for weak detection between the planted model 𝑃 and the null

model 𝑄𝜆0 .

Before formally stating our main theorem, we specify the conditioning event ℰ𝛾,𝜏 which will

be shown to hold with high probability in 2.8.1 under appropriate choices of 𝛾 and 𝜏 .

Definition 2.2.2 (Conditioning event). Given 𝛾 ≥ 0 and 𝜏 ∈ [0, 𝑘], define an event ℰ𝛾,𝜏 ⊂
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R𝑛×𝑝 × R𝑝 as

ℰ𝛾,𝜏 =
{︂
(𝑋, 𝛽*) :

‖𝑋(𝛽* + (𝛽*)′)‖2
E [‖𝑋(𝛽* + (𝛽*)′)‖2] ≤ 2 + 𝛾, ∀(𝛽*)′ ∈ {0, 1}𝑝 with ‖(𝛽*)′‖0 = 𝑘 and ⟨(𝛽*)′, 𝛽*⟩ ≥ 𝜏

}︂
.

(2.11)

To understand the value of 𝛾, 𝜏 in the definition of this event, notice that for each 𝛽*, (𝛽*)′,

from the definition of 𝑋, we have 𝑋(𝛽* + (𝛽*)′) ∼ 𝒩 (0, 2(𝑘 + 𝑠)I𝑛) and therefore,

‖𝑋(𝛽* + (𝛽*)′)‖2
2(𝑘 + 𝑠)

∼ 𝜒2
𝑛.

Thus, by the concentration inequality of chi-squared distributions, the random variable

‖𝑋(𝛽* + (𝛽*)′)‖2
E [‖𝑋(𝛽* + (𝛽*)′)‖2]

is expected to concentrate around 1 and thus is likely to be smaller than 2 + 𝛾 for a relatively

large 𝛾. The parameter 𝜏 quantifies the set of 𝑘-sparse (𝛽*)′ that we expect this relation to hold.

Notice that ⟨(𝛽*)′, 𝛽*⟩ ≥ 𝜏 is equivalent with the Hamming-distance between 𝛽* and (𝛽*)′ to be

equal to 2 (𝑘 − 𝜏).

Next, we explain the intuition behind our choice of conditioning event ℰ𝛾,𝜏 . Recall that in

view of (2.10), 𝜒2(𝑃‖𝑄𝜆0) blows up to infinity when the overlap ⟨𝛽*, (𝛽*)′⟩ is equal to 𝑘. In fact,

when the overlap ⟨𝛽*, (𝛽*)′⟩ = 𝑘, ‖𝑋(𝛽* + (𝛽*)′)‖2 can be enormously large, causing 𝜒2(𝑃‖𝑄𝜆0)

to explode. We rule out this catastrophic event by conditioning on ℰ𝛾,𝜏 which upper bounds

‖𝑋(𝛽* + (𝛽*)′)‖2 when the overlap ⟨𝛽*, (𝛽*)′⟩ is large (See (2.35) for the key step of upper

bounding ‖𝑋(𝛽* + (𝛽*)′)‖2).

As a result, we are able to prove that the 𝜒2-divergence between the conditional planted

model 𝑃ℰ𝛾,𝜏 and the null model 𝑄𝜆0 for 𝜆0 =
√︀
𝑘/𝜎2 + 1 is 𝑜(1), which implies the following

general impossibility of detection result.

Theorem 2.2.3. Suppose 𝑘 ≤ 𝑝
1
2
−𝛿 for an arbitrarily small fixed constant 𝛿 ∈ (0, 1

2
) and 𝑘/𝜎2 ≥

𝐶 for a sufficiently large constant 𝐶 only depending on 𝛿. Assume 𝑛 ≤ (1− 𝛼)𝑛info for 𝛼 ∈
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(0, 1/2] such that

𝛼 =
8

log(1 + 𝑘/𝜎2)
∨ 32 log log(𝑝/𝑘)

log(𝑝/𝑘)
. (2.12)

Set

𝛾 =
𝛼𝑘 log(𝑝/𝑘)

𝑛
and 𝜏 = 𝑘

(︂
1− 1

log2(1 + 𝑘/𝜎2)

)︂
.

Then for 𝜆0 =
√︁

𝑘
𝜎2 + 1,

𝜒2
(︀
𝑃ℰ𝛾,𝜏‖𝑄𝜆0

)︀
= 𝑜(1). (2.13)

Furthermore 𝐷(𝑃ℰ𝛾,𝜏‖𝑄𝜆0) = 𝑜(1), TV(𝑃ℰ𝛾,𝜏 , 𝑄𝜆0) = 𝑜(1), and TV(𝑃,𝑄𝜆0) = 𝑜(1).

The proof of the Theorem can be found in Section 2.3.2.

2.2.2 Impossibility of Weak Recovery with 𝑛 < 𝑛info

In this section we present our impossibility of recovery result. We do this using the impossibility of

detection result established above. Specifically we first strengthen Theorem 2.2.3 and show that

under the assumptions of Theorem 2.2.3, 𝐷(𝑃‖𝑄𝜆0) = 𝑜𝑝(1). Notice that this is not needed to

conclude impossibility of detection, that is 𝑇𝑉 (𝑃,𝑄𝜆0) = 𝑜(1), but is needed here for establishing

the impossibility of recovery result. As a second step, inspired by the celebrated area theorem,

we establish (Lemma 2.4.1) a lower bound to the minimum MSE in terms of 𝐷(𝑃‖𝑄𝜆0), which is

potentially of independent interest. The lemma essentially quantifies the natural idea that if the

data (𝑌,𝑋) drawn from planted model are statistically close to the data (𝑌,𝑋) drawn from null

model then there are limitations on the performance of recovering the hidden vector 𝛽* based

on the data (𝑌,𝑋) from the planted model. Interestingly the lemma itself does not require the

hidden vector 𝛽* to be binary or 𝑘-sparse but only to satisfy E [‖𝛽*‖22] = 𝑘. Combining the two

steps allows us to conclude that the minimum MSE is 𝑘(1 + 𝑜𝑝(1)); hence the impossibility of

weak recovery.

Theorem 2.2.4. Suppose 𝑘 ≤ 𝑝
1
2
−𝛿 for an arbitrarily small fixed constant 𝛿 ∈ (0, 1

2
) and

𝑘/𝜎2 ≥ 𝐶 for a sufficiently large constant 𝐶 only depending on 𝛿. Let 𝜆0 =
√︀
𝑘/𝜎2 + 1. If
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𝑛 ≤ (1− 𝛼)𝑛info for 𝛼 ∈ (0, 1/2] given in (2.12), then it holds that

𝐷 (𝑃‖𝑄𝜆0) = 𝑜𝑝(1). (2.14)

Furthermore, if 𝑛 ≤ ⌊(1−𝛼)𝑛info⌋− 1, then for any estimator 𝛽* that is a function of 𝑋 and 𝑌 ,

MSE
(︁
𝛽*
)︁
= 𝑘 (1 + 𝑜𝑝(1)) . (2.15)

The proof of the above Theorem can be found in Section 2.4.

2.2.3 Positive Result for Strong Recovery with 𝑛 > 𝑛info

This subsection and the next one are in the regime where 𝑛 > 𝑛info. In these regimes, in contrast

to 𝑛 < 𝑛info we establish that both strong recovery and strong detection are possible.

Towards recovering the vector 𝛽*, we consider the Maximum Likelihood Estimator (MLE) of

𝛽*:

𝛽* = arg min
(𝛽*)′∈{0,1}𝑝,‖(𝛽*)′‖0=𝑘

‖𝑌 −𝑋(𝛽*)′‖2.

We show that MLE achieves strong recovery of 𝛽* if 𝑛 ≥ (1 + 𝜖)𝑛info for an arbitrarily small but

fixed constant 𝜖 whenever 𝑘 = 𝑜(𝑝) and 𝑘/𝜎2 ≥ 𝐶(𝜖) for a sufficiently large constant 𝐶 (𝜖) > 0.

Specifically, we establish the following result.

Theorem 2.2.5. Suppose log log (𝑝/𝑘) ≥ 1. If

𝑛 ≥
(︂
1 +

log 2

log (1 + 𝑘/(2𝜎2))

)︂(︂
1 +

4 log log(𝑝/𝑘)

log(𝑝/𝑘)

)︂
𝑛info, (2.16)

then

P
{︂
‖𝛽* − 𝛽*‖2 ≥ 2𝑘

log(𝑝/𝑘)

}︂
≤ 𝑒2

log2(𝑝/𝑘)(1− 𝑒−1)
. (2.17)

Furthermore, if additionally 𝑘 = 𝑜(𝑝), then

1

𝑘
E
[︂⃦⃦
⃦𝛽* − 𝛽*

⃦⃦
⃦
2

2

]︂
= 𝑜𝑝(1), (2.18)
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i.e., MLE achieves strong recovery of 𝛽*.

The proof of the above Theorem can be found in Section 2.5.1.

2.2.4 Positive Result for Strong Detection with 𝑛 > 𝑛info

In this subsection we establish that when 𝑛 > 𝑛info strong detection is possible. To distinguish

the planted model 𝑃 and the null model 𝑄𝜆, we consider the test statistic:

𝒯 (𝑋, 𝑌 ) = min
(𝛽*)′∈{0,1}𝑝,‖(𝛽*)′‖0=𝑘

‖𝑌 −𝑋𝛽*‖2
‖𝑌 ‖2 .

Theorem 2.2.6. Suppose

log 𝑛− 2

𝑛
log

(︂
𝑝

𝑘

)︂
→ +∞ (2.19)

and

𝑛 ≥ 2 log
(︀
𝑝
𝑘

)︀

log (1 + 𝑘/𝜎2) + log(1− 𝛼)
(2.20)

for an arbitrarily small but fixed constant 𝛼 ∈ (0, 1). Then by letting 𝜏 = 1
(1−𝛼/2)(1+𝑘/𝜎2)

, we have

that

𝑃 (𝒯 (𝑋, 𝑌 ) ≥ 𝜏) +𝑄𝜆 (𝒯 (𝑋, 𝑌 ) ≤ 𝜏) = 𝑜(1),

which achieves the strong detection between the planted model 𝑃 and the null model 𝑄𝜆.

The proof of Theorem 2.2.6 can be found in Section 2.5.2.

We close this section with one remark, explaining the newly introduced condition (2.19).

Remark 2.2.7. Recall that 𝑛info = 2𝑘 log(𝑝/𝑘)/ log(1 + 𝑘/𝜎2) and
(︀
𝑝
𝑘

)︀
≤ (𝑒𝑝/𝑘)𝑘. Thus,

log 𝑛info −
2

𝑛info

log

(︂
𝑝

𝑘

)︂
≥ log

(︂
2𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)

)︂
− log(𝑒𝑝/𝑘)

log(𝑝/𝑘)
log
(︀
1 + 𝑘/𝜎2

)︀

≥ log
(︁
𝑘 log

𝑝

𝑘

)︁
− log log

(︀
1 + 𝑘/𝜎2

)︀
− log

(︀
1 + 𝑘/𝜎2

)︀
− log (1 + 𝑘/𝜎2)

log(𝑝/𝑘)
.

If 1 + 𝑘/𝜎2 ≤
(︀
𝑘 log 𝑝

𝑘

)︀1−𝜂 for some fixed constant 𝜂 > 0, then it follows from the last displayed
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equation that

log 𝑛info −
2

𝑛info

log

(︂
𝑝

𝑘

)︂
≥ 𝜂 log

(︁
𝑘 log

𝑝

𝑘

)︁
− log log

(︁
𝑘 log

𝑝

𝑘

)︁
− log

(︀
𝑘 log 𝑝

𝑘

)︀

log(𝑝/𝑘)

which goes to +∞ as 𝑝→ +∞; hence 𝑛info satisfies (2.19).

Therefore, assuming that 1 + 𝑘/𝜎2 ≤
(︀
𝑘 log 𝑝

𝑘

)︀1−𝜂 and 𝑛 ≥ (1 + 𝜖)𝑛info for some arbitrarily

small constants 𝜂, 𝜖 > 0, there exists a constant 𝐶 = 𝐶(𝜖) > 0 such that if 𝑘/𝜎2 ≥ 𝐶(𝜖), then the

test statistic 𝒯 (𝑋, 𝑌 ) achieves strong detection.

2.3 Proof of Negative Results for Detection

2.3.1 Proof of Theorem 2.2.1

We start with an explicit computation of the chi-squared divergence 𝜒2(𝑃‖𝑄𝜆).

Proposition 2.3.1. For any 𝜆 >
√︀
𝑘/𝜎2 + 1/2,

𝜒2(𝑃‖𝑄𝜆) = 𝜆2𝑛 Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
2𝜆2 − 1− 𝑘 + 𝑆

𝜎2

)︂−𝑛/2(︂
1 +

𝑘 − 𝑆

𝜎2

)︂−𝑛/2
]︃
− 1.

Proof. Since the marginal distribution of 𝑋 is the same under the planted and null models, it

follows that for any 𝛽*,

𝑃 (𝑋, 𝑌 )

𝑄𝜆(𝑋, 𝑌 )
=
𝑃 (𝑌 |𝑋)

𝑄𝜆(𝑌 )
=

Exp𝛽* [𝑃 (𝑌 |𝑋, 𝛽*)]

𝑄𝜆(𝑌 )
.

Therefore (︂
𝑃 (𝑋, 𝑌 )

𝑄𝜆(𝑋, 𝑌 )

)︂2

= Exp𝛽*⊥⊥(𝛽*)′

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂
,

where 𝛽* ⊥⊥ (𝛽*)′ denote two independent copies. By Fubini’s theorem, we have

Exp𝑄𝜆

[︃(︂
𝑃

𝑄𝜆

)︂2
]︃
= Exp𝛽*⊥⊥(𝛽*)′ Exp𝑋 Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂
, (2.21)

where 𝑋𝑖𝑗
i.i.d.∼ 𝒩 (0, 1) and 𝑌𝑖𝑗

i.i.d.∼ 𝒩 (0, 𝜆2𝜎2).
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Since in the planted model, conditional on (𝑋, 𝛽*), 𝑌 ∼ 𝒩 (𝑋𝛽*, 𝜎2I𝑛). It follows that

𝑃 (𝑌 |𝑋, 𝛽*)

𝑄𝜆(𝑌 )
= 𝜆𝑛 exp

(︂
− 1

2𝜎2
‖𝑌 −𝑋𝛽*‖22 +

1

2𝜆2𝜎2
‖𝑌 ‖22

)︂

= 𝜆𝑛 exp

(︂
−𝜆

2 − 1

2𝜎2𝜆2
‖𝑌 ‖22 +

1

𝜎2
⟨𝑌,𝑋𝛽*⟩ − 1

2𝜎2
‖𝑋𝛽*‖22

)︂
.

Hence,

𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

= 𝜆2𝑛 exp

(︂
−𝜆

2 − 1

𝜎2𝜆2
‖𝑌 ‖22 +

1

𝜎2
⟨𝑌,𝑋 (𝛽* + (𝛽*)′)⟩ − 1

2𝜎2

(︀
‖𝑋𝛽*‖22 + ‖𝑋(𝛽*)′‖22

)︀)︂

which equals

𝜆2𝑛𝑒
−𝜆2−1

𝜎2𝜆2

⃦⃦⃦⃦
𝑌−𝜆2𝑋(𝛽*+(𝛽*)′)

2(𝜆2−1)

⃦⃦⃦⃦2
2

+
𝜆2‖𝑋(𝛽*+(𝛽*)′)‖22

4(𝜆2−1)𝜎2 − 1
2𝜎2 (‖𝑋𝛽*‖22+‖𝑋(𝛽*)′‖22)

.

Using the fact that E
[︁
𝑒𝑡𝑍

2
]︁
= 1√

1−2𝑡𝜎2 𝑒
𝜇2𝑡/(1−2𝑡𝜎2) for 𝑡 < 1/2 and 𝑍 ∼ 𝒩 (𝜇, 𝜎2), we get that

Exp𝑌

[︃
exp

(︃
−𝜆

2 − 1

𝜎2𝜆2

⃦⃦
⃦⃦𝑌 − 𝜆2𝑋 (𝛽* + (𝛽*)′)

2(𝜆2 − 1)

⃦⃦
⃦⃦
2

2

)︃]︃

=
1

(2𝜆2 − 1)𝑛/2
exp

(︃
− 𝜆2 ‖𝑋 (𝛽* + (𝛽*)′)‖22
4(2𝜆2 − 1)(𝜆2 − 1)𝜎2

)︃
.

Combining the last two displayed equations yields that

Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂

=
𝜆2𝑛

(2𝜆2 − 1)𝑛/2
exp

{︂
1

2𝜎2(2𝜆2 − 1)

(︁
(1− 𝜆2)

(︁
‖𝑋𝛽*‖22 + ‖𝑋(𝛽*)′‖22

)︁
+ 2𝜆2 ⟨𝑋𝛽*, 𝑋(𝛽*)′⟩

)︁}︂
.

(2.22)
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Let 𝑇 = supp(𝛽*) and 𝑇 ′ = supp((𝛽*)′). Let 𝑋𝑖 denote the 𝑖-th column of 𝑋. Define

𝑍0 =
∑︁

𝑖∈𝑇∩𝑇 ′

𝑋𝑖, 𝑍1 =
∑︁

𝑖∈𝑇∖𝑇 ′

𝑋𝑖, 𝑍2 =
∑︁

𝑖∈𝑇 ′∖𝑇
𝑋𝑖.

Then conditional on 𝛽* and (𝛽*)′, 𝑍0, 𝑍1, 𝑍2 are mutually independent and

𝑍0 ∼ 𝒩 (0, 𝑠I𝑛), 𝑍1 ∼ 𝒩 (0, (𝑘 − 𝑠)I𝑛), 𝑍2 ∼ 𝒩 (0, (𝑘 − 𝑠)I𝑛),

where 𝑠 = |𝑇 ∩ 𝑇 ′| = ⟨𝛽*, (𝛽*)′⟩. Moreover, 𝑋𝛽*, 𝑋(𝛽*)′ can be expressed as a function of

𝑍0, 𝑍1, 𝑍2 simply by

𝑋𝛽* = 𝑍0 + 𝑍1 and 𝑋(𝛽*)′ = 𝑍0 + 𝑍2. (2.23)

Let 𝑍 = [𝑍0, 𝑍1, 𝑍2]
𝑡 ∈ R3𝑛. Using (2.22) and (2.23) and elementary algebra we have

Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂
=

𝜆2𝑛

(2𝜆2 − 1)𝑛/2
exp

{︀
𝑡𝑍⊤𝐴𝑍

}︀
, (2.24)

where

𝑡 =
1

2𝜎2(2𝜆2 − 1)
, and 𝐴 =

⎡
⎢⎢⎢⎣

2 1 1

1 1− 𝜆2 𝜆2

1 𝜆2 1− 𝜆2

⎤
⎥⎥⎥⎦⊗ I𝑛 ∈ R3𝑛×3𝑛,

where by 𝐴⊗𝐵 we refer to the Kronecker product between two matrices 𝐴 and 𝐵. Note that 𝑍

is a zero-mean Gaussian vector with covariance matrix

𝑉 = diag {𝑠, 𝑘 − 𝑠, 𝑘 − 𝑠} ⊗ I𝑛.

Note that

𝐴𝑉 =

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

2 1 1

1 1− 𝜆2 𝜆2

1 𝜆2 1− 𝜆2

⎤
⎥⎥⎥⎦ diag {𝑠, 𝑘 − 𝑠, 𝑘 − 𝑠}

⎞
⎟⎟⎟⎠⊗ I𝑛.

It is straightforward to find that the eigenvalues of 𝐴𝑉 are 0 of multiplicity 𝑛, 𝑘+𝑠 of multiplicity
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𝑛, and (𝑘 − 𝑠)(1− 2𝜆2) of multiplicity 𝑛. Thus,

det(I3𝑛 − 2𝑡𝐴𝑉 ) = (1− 2𝑡(𝑘 + 𝑠))𝑛
(︀
1− 2𝑡(𝑘 − 𝑠)(1− 2𝜆2)

)︀𝑛
. (2.25)

It follows from (2.24) that

Exp𝑋 Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂
=

𝜆2𝑛

(2𝜆2 − 1)𝑛/2
Exp𝑍

[︁
𝑒𝑡𝑍

⊤𝐴𝑍
]︁

=
𝜆2𝑛

(2𝜆2 − 1)𝑛/2
1√︀

det(I3𝑛 − 2𝑡𝐴𝑉 )
, (2.26)

where the last equality holds if 𝑡 < 1
2(𝑘+𝑠)

and follows from the expression of MGF of a quadratic

form of normal random variables, see, e.g., [Bal67, Lemma 2].

Combining (2.25) and (2.26) yields that if 𝑡 = 1
2𝜎2(2𝜆2−1)

< 1
2(𝑘+𝑠)

,

Exp𝑋 Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2
𝜆(𝑌 )

]︂

=
𝜆2𝑛

(2𝜆2 − 1)𝑛/2

(︂
1− 𝑘 + 𝑠

𝜎2(2𝜆2 − 1)

)︂−𝑛/2(︂
1 +

𝑘 − 𝑠

𝜎2

)︂−𝑛/2

= 𝜆2𝑛
(︂
2𝜆2 − 1− 𝑘 + 𝑠

𝜎2

)︂−𝑛/2(︂
1 +

𝑘 − 𝑠

𝜎2

)︂−𝑛/2

.

Note that if 2𝜆2 − 1 > 2𝑘
𝜎2 , then 1

2𝜎2(2𝜆2−1)
< 1

2(𝑘+𝑠)
for all 0 ≤ 𝑠 ≤ 𝑘. It follows from (2.21) that

if 2𝜆2 − 1 > 2𝑘
𝜎2 , then

Exp𝑄𝜆

[︃(︂
𝑃

𝑄𝜆

)︂2
]︃
= 𝜆2𝑛 Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
2𝜆2 − 1− 𝑘 + 𝑆

𝜎2

)︂−𝑛/2(︂
1 +

𝑘 − 𝑆

𝜎2

)︂−𝑛/2
]︃
.

We establish also the following lemma.

Lemma 2.3.2. Suppose 𝑘 ≤ 𝑝
1
2
−𝛿 for an arbitrarily small fixed constant 𝛿 ∈ (0, 1

2
) and 𝑘

𝜎2 ≥ 𝐶

for a sufficiently large constant 𝐶 only depending on 𝛿. If 𝑛 satisfies condition (2.9), then

Exp𝑆∼Hyp(𝑘,𝑘,𝑝)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛
]︃
= 1 + 𝑜𝑝(1). (2.27)
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Proof. The lemma readily follows by combining 2.7.2 and 2.7.5 with 𝛼 = log log(𝑝/𝑘)
log(𝑝/𝑘)

and 𝑐 =

𝑝−1/2−𝛿.

Proof of Theorem 2.2.1. Using Proposition 2.3.1 for 𝜆 = 𝜆0 satisfying 𝜆20 = 𝑘/𝜎2 + 1 we have

𝜒2(𝑃‖𝑄𝜆0) = Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛
]︃
− 1.

Using now 2.3.2 we have 𝜒2(𝑃‖𝑄𝜆0) = 𝑜(1). The chain of inequalities (2.5) concludes the proof

of Theorem 2.2.1.

2.3.2 Proof of Theorem 2.2.3

Proof of Theorem 2.2.3. For notational simplicity we denote in this proof the probability measure

𝑄𝜆0 simply by 𝑄 and the event ℰ𝛾,𝜏 by ℰ .

We first show that (2.13) implies 𝐷(𝑃ℰ‖𝑄) = 𝑜(1), TV(𝑃ℰ , 𝑄) = 𝑜(1), and TV(𝑃,𝑄) = 𝑜(1).

It follows from (2.5) that 𝐷(𝑃ℰ‖𝑄) = 𝑜(1) and TV(𝑃ℰ , 𝑄) = 𝑜(1). Observe that under our

choice of 𝜏 and 𝛾, 2.8.1 implies that

P {ℰ𝑐} ≤ exp
(︁
−𝑛𝛾

8

)︁
= exp

(︂
−𝛼𝑘 log(𝑝/𝑘)

8

)︂
≤ exp (−4𝑘 log log(𝑝/𝑘)) = 𝑜𝑝(1). (2.28)

Thus, in view of (2.8), we get that

TV(𝑃,𝑄) ≤ (1− P {ℰ𝑐}) TV(𝑃ℰ , 𝑄) + P {ℰ𝑐}TV(𝑃ℰ𝑐 , 𝑄)

≤ TV(𝑃ℰ , 𝑄) + P {ℰ𝑐} = 𝑜(1).

Next we prove (2.13). We first carry calculations for any 𝜆 >
√︀
𝑘/𝜎2 + 1/2; we then restrict

to 𝜆 =
√︀
𝑘/𝜎2 + 1. In view of (2.7), we have

𝑃ℰ(𝑋, 𝑌 )

𝑄(𝑋, 𝑌 )
=

1

𝑄(𝑌 )𝑄(𝑋)
Exp𝛽*

[︂
𝑃 (𝑋)𝑃 (𝑌 |𝑋, 𝛽*)1{ℰ}(𝑋, 𝛽*)

P {ℰ}

]︂
= Exp𝛽*

[︂
𝑃 (𝑌 |𝑋, 𝛽*)1{ℰ}(𝑋, 𝛽*)

𝑄(𝑌 )P {ℰ}

]︂
,
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where the last equality holds because 𝑃 (𝑋) = 𝑄(𝑋). Hence

(︂
𝑃ℰ(𝑋, 𝑌 )

𝑄(𝑋, 𝑌 )

)︂2

= Exp𝛽*⊥⊥(𝛽*)′

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)1{ℰ}(𝑋, 𝛽*)1{ℰ}(𝑋, (𝛽*)′)

𝑄2(𝑌 )P2 {ℰ}

]︂
,

where (𝛽*)′ is an independent copy of 𝛽*. Recall P {ℰ} = 1− 𝑜(1). Therefore,

Exp𝑄

[︃(︂
𝑃ℰ
𝑄

)︂2
]︃

equals

(1 + 𝑜(1)) Exp𝛽*⊥⊥(𝛽*)′ Exp𝑋

[︂
Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2(𝑌 )

]︂
1{ℰ}(𝑋, 𝛽

*)1{ℰ}(𝑋, (𝛽
*)′)

]︂
.

It follows from (2.22) that

Exp𝑌

[︂
𝑃 (𝑌 |𝑋, 𝛽*)𝑃 (𝑌 |𝑋, (𝛽*)′)

𝑄2(𝑌 )

]︂

=
𝜆2𝑛

(2𝜆2 − 1)𝑛/2
exp

{︂‖𝑋(𝛽* + (𝛽*)′)‖2 − (2𝜆2 − 1) ‖𝑋(𝛽* − (𝛽*)′)‖2
4𝜎2(2𝜆2 − 1)

}︂
.

Combining the last two displayed equation yields that

Exp𝑄

[︃(︂
𝑃ℰ
𝑄

)︂2
]︃

=
(1 + 𝑜(1))𝜆2𝑛

(2𝜆2 − 1)𝑛/2
Exp𝛽*⊥⊥(𝛽*)′ Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖2

4𝜎2(2𝜆2−1) 1{ℰ}(𝑋, 𝛽
*)1{ℰ}(𝑋, (𝛽

*)′)

]︃
.

(2.29)

Next we break the right hand side of (2.29) into two disjoint parts depending on whether

⟨𝛽*, (𝛽*)′⟩ ≤ 𝜏 . We prove that the part where ⟨𝛽*, (𝛽*)′⟩ ≤ 𝜏 is 1 + 𝑜(1) and the part where

⟨𝛽*, (𝛽*)′⟩ > 𝜏 is 𝑜(1). Combining them we conclude the desired result.

Part 1: Note that
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Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖2

4𝜎2(2𝜆2−1) 1{ℰ}(𝑋, 𝛽
*)1{ℰ}(𝑋, (𝛽

*)′)

]︃
1{⟨𝛽*,(𝛽*)′⟩≤𝜏}

≤ Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖2

4𝜎2(2𝜆2−1)

]︃
1{⟨𝛽*,(𝛽*)′⟩≤𝜏}. (2.30)

Since ⟨𝛽* + (𝛽*)′, 𝛽* − (𝛽*)′⟩ = 0 and 𝑋𝑖𝑗
i.i.d.∼ 𝒩 (0, 1), conditional on (𝛽*, (𝛽*)′),

Cov(𝑋(𝛽* + (𝛽*)′), 𝑋(𝛽* − (𝛽*)′)) = 0

and therefore 𝑋(𝛽*+(𝛽*)′) ∼ 𝒩 (0, 2(𝑘+𝑠)I𝑛) is independent of 𝑋(𝛽*−(𝛽*)′) ∼ 𝒩 (0, 2(𝑘−𝑠)I𝑛),
for 𝑠 = ⟨𝛽*, (𝛽*)′⟩. Therefore,

Exp𝑋

[︂
exp

{︂‖𝑋(𝛽* + (𝛽*)′)‖2 − (2𝜆2 − 1) ‖𝑋(𝛽* − (𝛽*)′)‖2
4𝜎2(2𝜆2 − 1)

}︂]︂

= Exp𝑋

[︂
exp

{︂‖𝑋(𝛽* + (𝛽*)′)‖2
4𝜎2(2𝜆2 − 1)

}︂]︂
Exp𝑋

[︂
exp

{︂
−‖𝑋(𝛽* − (𝛽*)′)‖2

4𝜎2

}︂]︂

=

(︂
1− (𝑘 + 𝑠)

𝜎2(2𝜆2 − 1)

)︂−𝑛/2(︂
1 +

(𝑘 − 𝑠)

𝜎2

)︂−𝑛/2

, (2.31)

where the last equality holds if 𝜆 >
√︀

(𝑘 + 𝑠)/(2𝜎2) + 1/2 and follows from the fact that

E𝑍∼𝜒2(1)

[︀
𝑒−𝑡𝑍

]︀
= 1√

1+2𝑡
for 𝑡 > −1/2. Combining (2.30) and (2.31) yields that if 𝜆 >

√︀
𝑘/𝜎2 + 1/2,

then

𝜆2𝑛

(2𝜆2 − 1)𝑛/2
(2.32)

× Exp𝛽*⊥⊥(𝛽*)′ Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖2

4𝜎2(2𝜆2−1) 1{ℰ}(𝑋, 𝛽
*)1{ℰ}(𝑋, (𝛽

*)′)

]︃
1{⟨𝛽*,(𝛽*)′⟩≤𝜏}

≤ 𝜆2𝑛

(2𝜆2 − 1)𝑛/2
Exp𝛽*⊥⊥(𝛽*)′

[︃(︂
1− (𝑘 + 𝑠)

𝜎2(2𝜆2 − 1)

)︂−𝑛/2(︂
1 +

(𝑘 − 𝑠)

𝜎2

)︂−𝑛/2

1{𝑠≤𝜏}

]︃
,
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In particular, by plugging in 𝜆 =
√︀
𝑘/𝜎2 + 1, we get that

𝜆2𝑛

(2𝜆2 − 1)𝑛/2
(2.33)

× Exp𝛽*⊥⊥(𝛽*)′ Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖2

4𝜎2(2𝜆2−1) 1{ℰ}(𝑋, 𝛽
*)1{ℰ}(𝑋, (𝛽

*)′)

]︃
1{⟨𝛽*,(𝛽*)′⟩≤𝜏}

(𝑎)

≤
(︂
𝑘

𝜎2
+ 1

)︂𝑛

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

{︃(︂
1 +

(𝑘 − 𝑆)

𝜎2

)︂−𝑛

1{𝑆≤𝜏}

}︃

= Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

{︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≤𝜏}

}︃
, (2.34)

where (𝑎) holds by noticing that 𝑠 = ⟨𝛽*, (𝛽*)′⟩ follows an Hypergeometric distribution with

parameters (𝑝, 𝑘, 𝑘) as the dot product of two uniformly at random chosen binary 𝑘-sparse vectors.

Using Lemma 2.7.2 we conclude that under our assumptions, there exists a constant 𝐶 > 0

depending only on 𝛿 > 0 such that if 𝑘/𝜎2 ≥ 𝐶 then

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

{︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≤𝜏}

}︃
= 1 + 𝑜(1).

concluding the Part 1.

Part 2: By the definiton of ℰ , since 𝜏 ≤ 𝑠 = ⟨𝛽*, (𝛽*)′⟩ ≤ 𝑘,

‖𝑋(𝛽* + (𝛽*)′)‖2 ≤ E𝑋 [‖𝑋(𝛽* + (𝛽*)′)‖2](2 + 𝛾) = 2𝑛(𝑘 + 𝑠)(2 + 𝛾) ≤ 4𝑛𝑘(2 + 𝛾).

Therefore,

Exp𝑋

[︃
exp

{︃
‖𝑋(𝛽* + (𝛽*)′)‖2 − (2𝜆2 − 1) ‖𝑋(𝛽* − (𝛽*)′)‖22

4𝜎2(2𝜆2 − 1)

}︃
1{ℰ}(𝑋, 𝛽

*)1{ℰ}(𝑋, (𝛽
*)′)

]︃

× 1{⟨𝛽*,(𝛽*)′⟩>𝜏}

≤ Exp𝑋

[︃
exp

{︃
4𝑛𝑘(2 + 𝛾)− (2𝜆2 − 1) ‖𝑋(𝛽* − (𝛽*)′)‖22

4𝜎2(2𝜆2 − 1)

}︃]︃
1{⟨𝛽*,(𝛽*)′⟩>𝜏}

= exp

{︂
𝑛𝑘(2 + 𝛾)

𝜎2(2𝜆2 − 1)

}︂(︂
1 +

(𝑘 − 𝑠)

𝜎2

)︂−𝑛/2

1{⟨𝛽*,(𝛽*)′⟩>𝜏}, (2.35)

where the first inequality follows from the definition of event ℰ and the last equality holds due
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to (2.31). It follows that

𝜆2𝑛

(2𝜆2 − 1)𝑛/2

× Exp𝛽*⊥⊥(𝛽*)′

[︃
Exp𝑋

[︃
𝑒

‖𝑋(𝛽*+(𝛽*)′)‖2−(2𝜆2−1)‖𝑋(𝛽*−(𝛽*)′)‖22
4𝜎2(2𝜆2−1) 1{ℰ}(𝑋, 𝛽

*)1{ℰ}(𝑋, (𝛽
*)′)

]︃
1{⟨𝛽*,(𝛽*)′⟩>𝜏}

]︃

≤ 𝜆2𝑛

(2𝜆2 − 1)𝑛/2
exp

{︂
𝑛𝑘(2 + 𝛾)

𝜎2(2𝜆2 − 1)

}︂
Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1 +

(𝑘 − 𝑆)

𝜎2

)︂−𝑛/2

1{𝑆>𝜏}

]︃

(𝑎)

≤ 𝜆𝑛𝑒𝑛(1+𝛾/2) Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1 +

(𝑘 − 𝑆)

𝜎2

)︂−𝑛/2

1{𝑆>𝜏}

]︃

(𝑏)
= 𝑒𝑛(1+𝛾/2) Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛/2

1{𝑆>𝜏}

]︃
, (2.36)

where (𝑎) follows due to 2𝜆2−1 ≥ 𝜆2 and 2𝜆2−1 ≥ 2𝑘/𝜎2; (𝑏) follows by plugging in 𝜆2 = 𝑘/𝜎2+1.

Recall that 𝑛 ≤ (1− 𝛼)𝑛info. Then under our choice of 𝛼 and 𝜏 , applying 2.7.5 with 𝑛 being

replaced by 𝑛/2, 𝑐 = 𝑝−1/2−𝛿, we get that there exits a universal constant 𝐶 > 0 such that if

𝑘/𝜎2 ≥ 𝐶 then

𝑒𝑛(1+𝛾/2) Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛/2

1{𝑆>𝜏}

]︃

≤ exp

(︂
−𝛼𝑘 log 𝑝

𝑘
+ log

2− 𝑐

1− 𝑐
+ 𝑛

(︁
1 +

𝛾

2

)︁)︂

(𝑎)
= exp

(︂
−1

4
𝛼𝑘 log

𝑝

𝑘
+ log

2− 𝑐

1− 𝑐

)︂

(𝑏)

≤ exp

(︂
−8𝑘 log log

𝑝

𝑘
+ log

2− 𝑐

1− 𝑐

)︂
= 𝑜𝑝(1)

where (𝑎) follows because under our choice of 𝛾 and 𝛼,

𝑛
(︁
1 +

𝛾

2

)︁
≤ 𝑛+

1

2
𝛼𝑘 log

𝑝

𝑘
≤ 𝑛info +

1

2
𝛼𝑘 log

𝑝

𝑘
≤ 3

4
𝛼𝑘 log

𝑝

𝑘
;

(𝑏) holds due to 𝛼𝑘 log(𝑝/𝑘) ≥ 32𝑘 log log(𝑝/𝑘).

Combing the bounds for Parts 1 and 2, we conclude

𝜒2(𝑃ℰ‖𝑄) = Exp𝑄

[︃(︂
𝑃ℰ
𝑄

)︂2
]︃
− 1 = 𝑜(1),

66



as desired.

2.4 Proof of Negative Results for Recovery

2.4.1 Lower Bound on MSE

Our first result provides a connection between the relative entropy 𝐷(𝑃‖𝑄𝜆) and the MSE of

an estimator that depends only a subset of the observations. This bound is general in the sense

that it holds for any distribution on 𝛽* with E [‖𝛽*‖2] = 𝑘. For ease of notation, we write 𝑄𝜆 as

𝑄 whenever the context is clear.

Lemma 2.4.1. Given an integer 𝑛 ≥ 2 and an integer 𝑚 ∈ {1, . . . , 𝑛−1}, let 𝛽* be an estimator

that is a function of 𝑋 and the first 𝑚 observations (𝑌1, . . . , 𝑌𝑚). Then,

MSE
(︁
𝛽*
)︁
≥ 𝑒−

2
𝑛−𝑚

𝐷(𝑃 ||𝑄)(𝜎2 + 𝑘)− 𝜎2. (2.37)

Proof. The conditional mutual information 𝐼(𝛽*;𝑌 | 𝑋) can be rewritten as

𝐼(𝛽*;𝑌 | 𝑋) = E(𝛽*,𝑋,𝑌 )∼𝑃

[︂
log

𝑃 (𝑌 |𝑋, 𝛽*)

𝑃 (𝑌 |𝑋)

]︂

= E(𝛽*,𝑋,𝑌 )∼𝑃

[︂
log

𝑃 (𝑌 |𝑋, 𝛽*)

𝑄(𝑌 )

]︂
+ E(𝑋,𝑌 )∼𝑃

[︂
log

𝑄(𝑌 )

𝑃 (𝑌 |𝑋)

]︂
,

where (𝛽*, 𝑋, 𝑌 ) ∼ 𝑃 denotes that (𝛽*, 𝑋, 𝑌 ) are generated according to the planted model.

Plugging in the expression of 𝑃 (𝑌 |𝑋, 𝛽*) and 𝑄(𝑌 ), we get that

E(𝛽*,𝑋,𝑌 )∼𝑃

[︂
log

𝑃 (𝑌 |𝑋, 𝛽*)

𝑄(𝑌 )

]︂
=
𝑛

2
log(𝜆2) +

1

2
E
[︂‖𝑌 ‖22
𝜆2𝜎2

− ‖𝑌 −𝑋𝛽*‖22
𝜎2

]︂
.

Furthermore, by definition,

E(𝑋,𝑌 )∼𝑃

[︂
log

𝑄(𝑌 )

𝑃 (𝑌 |𝑋)

]︂
= −𝐷(𝑃‖𝑄)
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Combining the last three displayed equations gives that

𝐼(𝛽*;𝑌 | 𝑋) =
𝑛

2
log(𝜆2) +

1

2
E
[︂‖𝑌 ‖22
𝜆2𝜎2

− ‖𝑌 −𝑋𝛽*‖22
𝜎2

]︂
−𝐷(𝑃‖𝑄)

=
𝑛

2

[︂
log

(︂
𝜆2

1 + 𝑘/𝜎2

)︂
+

1 + 𝑘/𝜎2

𝜆2
− 1

]︂
+
𝑛

2
log(1 + 𝑘/𝜎2)−𝐷(𝑃‖𝑄)

≥ 𝑛

2
log(1 + 𝑘/𝜎2)−𝐷(𝑃‖𝑄). (2.38)

where the inequality follows from the fact that log(𝑢) + 1/𝑢− 1 ≥ 0 for all 𝑢 > 0.

To proceed, we will now provide an upper bound on 𝐼(𝛽*;𝑌 | 𝑋) in terms of the MSE.

Starting with the chain rule for mutual information, we have

𝐼(𝛽*;𝑌 | 𝑋) = 𝐼(𝛽*;𝑌 𝑚
1 | 𝑋) + 𝐼(𝛽*;𝑌 𝑛

𝑚+1 | 𝑋, 𝑌 𝑚
1 ), (2.39)

where we have used the shorthand notation 𝑌 𝑗
𝑖 = (𝑌𝑖, . . . , 𝑌𝑗). Next, we use the fact that mutual

information in the Gaussian channel under a second moment constraint is maximized by the

Gaussian input distribution. Hence,

𝐼(𝛽*;𝑌 𝑚
1 | 𝑋) ≤

𝑚∑︁

𝑖=1

𝐼(𝛽*;𝑌𝑖 | 𝑋)

≤ 𝑚

2
E
[︀
log
(︀
E
[︀
‖𝑌1‖2 | 𝑋

]︀
/𝜎2
)︀]︀

≤ 𝑚

2
log
(︀
E
[︀
‖𝑌1‖2

]︀
/𝜎2
)︀

≤ 𝑚

2
log
(︀
1 + 𝑘/𝜎2

)︀
, (2.40)

and

𝐼(𝛽*;𝑌 𝑛
𝑚+1 | 𝑋, 𝑌 𝑚

1 ) ≤
𝑛∑︁

𝑖=𝑚+1

𝐼(𝛽*;𝑌𝑖 | 𝑋, 𝑌 𝑚
1 )

≤ 𝑛−𝑚

2
log
(︀
E
[︀
‖𝑌𝑚+1 − E [𝑌𝑚+1 | 𝑋, 𝑌 𝑚

1 ] ‖2
]︀
/𝜎2
)︀

≤ 𝑛−𝑚

2
log
(︁
1 + MSE(𝛽*)/𝜎2

)︁
, (2.41)
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where the last inequality holds due to

E
[︀
‖𝑌𝑚+1 − E [𝑌𝑚+1 | 𝑋, 𝑌 𝑛

1 ] ‖2
]︀
= E

[︀
‖𝛽* − E [𝛽* | 𝑌 𝑚

1 , 𝑋]‖2
]︀
+ 𝜎2 ≤ MSE(𝛽*) + 𝜎2.

Plugging inequalities (2.40) and (2.41) back into (2.39) leads to

𝐼(𝛽*;𝑌 | 𝑋) ≤ 𝑚

2
log(1 + 𝑘/𝜎2) +

𝑛−𝑚

2
log(1 + MSE(𝛽*)/𝜎2). (2.42)

Comparing (2.42) with (2.38) and rearranging terms gives the stated result.

2.4.2 Upper Bound on Relative Entropy via Conditioning

We now show how a conditioning argument can be used to upper bound the relative entropy.

Recall that (2.8) implies

𝐷(𝑃 ||𝑄) ≤ (1− 𝜀)𝐷(𝑃ℰ ||𝑄) + 𝜀𝐷(𝑃ℰ𝑐 ||𝑄). (2.43)

The next result provides an upper bound on the second term on the right-hand side.

Lemma 2.4.2. For any ℰ ⊂ R𝑝 × R𝑛×𝑝 we have

𝜀𝐷(𝑃ℰ𝑐 ||𝑄) ≤ 2
√
𝜀+

𝜀𝑛

2
log(𝜆2) +

√
𝜀 𝑛(1 + 𝑘/𝜎2)

𝜆2
,

where 𝜀 = P {(𝑋, 𝛽*) ∈ ℰ𝑐}. In particular, if 𝜆2 = 1 + 𝑘/𝜎2, then

𝜀𝐷(𝑃ℰ𝑐||𝑄) ≤ 𝜀𝑛

2
log(1 + 𝑘/𝜎2) +

√
𝜀(2 + 𝑛).

Proof. Starting with the definition of the conditioned planted model in (2.7), we have

𝑃ℰ𝑐(𝑋, 𝑌 ) =
Exp𝛽*

[︀
𝑃 (𝑋, 𝑌 | 𝛽*)1{ℰ𝑐}(𝑋, 𝛽*)

]︀

P {ℰ𝑐} =
𝑃 (𝑋) Exp𝛽*

[︀
𝑃 (𝑌 | 𝑋, 𝛽*)1{ℰ𝑐}(𝑋, 𝛽*)

]︀

𝜖
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Recall that 𝑊𝑖𝑗
i.i.d.∼ 𝒩 (0, 𝜎2). It follows that 𝑃 (𝑌 | 𝛽*, 𝑋) ≤ (2𝜋𝜎2)−𝑛/2 and thus

𝑃ℰ(𝑋, 𝑌 ) ≤ 𝑃 (𝑋) Exp𝛽*

[︀
1{ℰ}(𝛽*, 𝑋)

]︀

𝜀(2𝜋𝜎2)𝑛/2
≤ 𝑃 (𝑋)

𝜀(2𝜋𝜎2)𝑛/2
.

Therefore, recalling that 𝑄(𝑋, 𝑌 ) = 𝑃 (𝑋)𝑄(𝑌 ), we have

𝐷(𝑃ℰ𝑐||𝑄) = Exp𝑃ℰ𝑐

[︂
log

𝑃ℰ𝑐(𝑋, 𝑌 )

𝑃 (𝑋)𝑄(𝑌 )

]︂

≤ Exp𝑃ℰ𝑐

[︂
log

1

𝜀 (2𝜋𝜎2)𝑛/2𝑄(𝑌 )

]︂

= log
1

𝜀
+
𝑛

2
log(𝜆2) +

E [‖𝑌 ‖2 | (𝑋, 𝛽*) ∈ ℰ𝑐]

2𝜆2𝜎2

Multiplying both sides by 𝜀 leads to

𝜀𝐷(𝑃ℰ𝑐 ||𝑄) ≤ 𝜀 log
1

𝜀
+
𝜀 𝑛

2
log(𝜆2) +

Exp
[︀
‖𝑌 ‖21{ℰ𝑐}(𝛽*, 𝑋)

]︀

2𝜆2𝜎2

The first term on the right-hand side satisfies 𝜀 log(1/𝜀) ≤ 2
√
𝜀. Furthermore, by the Cauchy-

Schwarz inequality,

E
[︀
‖𝑌 ‖21{ℰ𝑐}(𝛽

*, 𝑋)
]︀
≤
√︁

E
[︀
1{ℰ𝑐}(𝑋, 𝛽*)

]︀
E [‖𝑌 ‖4] =

√︀
𝜀𝑛(2 + 𝑛)(𝑘 + 𝜎2),

where we have used the fact that ‖𝑌 ‖2/(𝑘+ 𝜎2) has a chi-squared distribution with 𝑛 degrees of

freedom. Combining the above displays and using the inequality 𝑛+ 2 ≤ 3𝑛 leads to the stated

result.

2.4.3 Proof of Theorem 2.2.4

We are ready to prove Theorem 2.2.4.

Proof of Theorem 2.2.4. First, we prove (2.14) under the theorem assumptions. Let ℰ be ℰ𝛾,𝜏
with 𝛾 and 𝜏 given in Theorem 2.2.3. It follows from Theorem 2.2.3 that 𝐷(𝑃ℰ‖𝑄𝜆0) = 𝑜𝑝(1).

Moreover, it follows from 2.8.1 and 𝑘 = 𝑜 (𝑝) that

𝜀 = P {ℰ𝑐} ≤ 𝑒−4𝑘 log log(𝑝/𝑘).
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Thus we get from 2.4.2 that for 𝜆2 = 𝑘/𝜎2 + 1 and

𝜀𝐷(𝑃ℰ𝑐 ||𝑄𝜆0) ≤
𝜀𝑛

2
log
(︀
1 + 𝑘/𝜎2

)︀
+
√
𝜀 (2 + 𝑛)

≤ 𝜀𝑛info

2
log
(︀
1 + 𝑘/𝜎2

)︀
+
√
𝜀 (2 + 𝑛info)

≤ 𝑒−4𝑘 log log(𝑝/𝑘)
(︁
𝑘 log

𝑝

𝑘

)︁
+ 2𝑒−2𝑘 log log(𝑝/𝑘)

(︂
1 +

𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)

)︂
= 𝑜𝑝(1),

where the last equality holds due to 𝑘 = 𝑜(𝑝) and 𝑘/𝜎2 ≥ 𝐶 for a sufficiently large constant 𝐶.

In view of the upper bound in (2.43), we immediately get 𝐷(𝑃‖𝑄𝜆0) = 𝑜𝑝(1) as desired.

Next we prove (2.15). Note that if ⌊(1− 𝛼)𝑛info⌋ ≤ 1, then (2.15) is trivially true. Hence, we

assume ⌊(1 − 𝛼)𝑛info⌋ ≥ 2 in the following. Applying Lemma 2.4.1 with 𝑛 = ⌊(1 − 𝛼)𝑛info⌋ and

𝑚 = ⌊(1− 𝛼)𝑛info⌋ − 1 yields that

MSE(𝛽*)

𝑘
≥
(︂
1 +

𝜎2

𝑘

)︂
exp {−2𝐷(𝑃 ||𝑄𝜆0)} −

𝜎2

𝑘
= 1− 𝑜𝑝 (1) . (2.44)

where the last equality holds because 𝐷(𝑃 ||𝑄𝜆0) = 𝑜𝑝(1) and 𝑘/𝜎2 ≥ 𝐶 for a constant 𝐶.

2.5 Proof of Positive Results for Recovery and Detection

In this section we state and prove the positive result.

2.5.1 Proof of Theorem 2.2.5

Towards proving Theorem 2.2.5, we need the following lemma.

Lemma 2.5.1. Let 𝑋 ∈ R𝑛×𝑝 with i.i.d. 𝒩 (0, 1) entries and 𝑊 ∼ 𝑁(0, 𝜎2𝐼𝑛). Furthermore,

assume that 𝛽*, (𝛽*)′ ∈ {0, 1}𝑝 are two 𝑘-sparse vectors with ‖𝛽* − (𝛽*)′‖2 = 2ℓ for some ℓ ∈
{1, . . . , 𝑘}. Then

P
{︀
‖𝑊 +𝑋(𝛽* − (𝛽*)′)‖2 ≤ ‖𝑊‖2

}︀
≤
(︂
1 +

ℓ

2𝜎2

)︂−𝑛/2

.

Proof. Let𝑄(𝑥) be the complementary cumulative distribution function of the standard Gaussian

distribution, that is for any 𝑥 ∈ R, 𝑄(𝑥) = P [𝑍 ≥ 𝑥] for 𝑍 ∼ 𝒩 (0, 1). The Chernoff bound gives
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𝑄(𝑥) ≤ 𝑒−𝑥2/2 for all 𝑥 ≥ 0. Then

P
{︀
‖𝑊 +𝑋(𝛽* − (𝛽*)′)‖2 ≤ ‖𝑊‖2

}︀

= P
{︀
2𝑊 𝑇𝑋(𝛽* − (𝛽*)′) + ‖𝑋(𝛽* − (𝛽*)′)‖2 ≤ 0

}︀

= P
{︂−𝑊 𝑇𝑋(𝛽* − (𝛽*)′)

𝜎‖𝑋(𝛽* − (𝛽*)′)‖ ≥ ‖𝑋(𝛽* − (𝛽*)′)‖
2𝜎

}︂

(𝑎)
= E

[︂
𝑄

(︂‖𝑋(𝛽* − (𝛽*)′)‖
2𝜎

)︂]︂

(𝑏)

≤ E
[︂
exp

(︂
−‖𝑋(𝛽* − (𝛽*)′)‖2

8𝜎2

)︂]︂

≤
(︂
1 +

ℓ

2𝜎2

)︂−𝑛/2

,

where (𝑎) holds because conditioning on 𝑋, −𝑊𝑇𝑋(𝛽*−(𝛽*)′)
𝜎‖𝑋(𝛽*−(𝛽*)′)‖ ∼ 𝒩 (0, 1); (𝑏) holds due to 𝑄(𝑥) ≤

𝑒−𝑥2/2; the last inequality follows from ‖𝑋(𝛽*−(𝛽*)′)‖22/(2ℓ) ∼ 𝜒2(𝑛) and E𝑍∼𝜒2(1)

[︀
𝑒−𝑡𝑍

]︀
= 1√

1+2𝑡

for 𝑡 > 0.

We now proceed with the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5. First, note that when 𝑘 = 𝑜(𝑝), (2.18) readily follows from (2.17). In

particular, observe that since 𝛽*, 𝛽* ∈ {0, 1}𝑝 are binary 𝑘-sparse vectors, it follows that ‖𝛽* −
𝛽*‖2 ≤ 2𝑘 and therefore

1

𝑘
MSE

(︁
𝛽*
)︁
=

1

𝑘
E
[︁
‖𝛽* − 𝛽*‖2

]︁

≤ 2

log (𝑝/𝑘)
+ 2P

[︂
‖𝛽* − 𝛽*‖2 ≥ 2𝑘

log (𝑝/𝑘)

]︂

≤ 2

log (𝑝/𝑘)
+

2𝑒2

log2 (𝑝/𝑘) (1− 𝑒−1)
,

which is 𝑜𝑝 (1) when 𝑘 = 𝑜 (𝑝) .

It remains to prove (2.17). Set for convenience

𝑑 ,

⌈︂
𝑘

log(𝑝/𝑘)

⌉︂
. (2.45)
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By the definition of the MLE,

‖𝑊 +𝑋
(︁
𝛽* − 𝛽*

)︁
‖2 = ‖𝑌 −𝑋𝛽*‖2 ≤ ‖𝑌 −𝑋𝛽*‖2 = ‖𝑊‖2.

Hence,

{︁
‖𝛽* − 𝛽*‖2 ≥ 2𝑑

}︁

= ∪𝑘
ℓ=𝑑

{︀
∃(𝛽*)′ ∈ {0, 1}𝑝 : ‖(𝛽*)′‖0 = 𝑘, ‖(𝛽*)′ − 𝛽*‖2 = 2ℓ, ‖𝑊 +𝑋(𝛽* − (𝛽*)′)‖2 ≤ ‖𝑊‖2

}︀
.

By a union bound and Lemma 2.5.1, we have that

P
{︁
‖𝛽* − 𝛽*‖2 ≥ 2𝑑

}︁
≤

𝑘∑︁

ℓ=𝑑

(︂
𝑘

ℓ

)︂(︂
𝑝− 𝑘

ℓ

)︂(︂
1 +

ℓ

2𝜎2

)︂−𝑛/2 (𝑎)

≤
𝑘∑︁

ℓ=𝑑

(︂
𝑘𝑒

ℓ

)︂ℓ (︁𝑝𝑒
ℓ

)︁ℓ(︂
1 +

ℓ

2𝜎2

)︂−𝑛/2

(𝑏)

≤
𝑘∑︁

ℓ=𝑑

(︂
𝑒2𝑝𝑘

𝑑2

)︂ℓ(︂
1 +

ℓ

2𝜎2

)︂−𝑛/2

,
𝑘∑︁

ℓ=𝑑

exp (ℎ(ℓ)− ℓ) , (2.46)

where (𝑎) holds due to
(︀
𝑚1

𝑚2

)︀
≤ (𝑒𝑚1/𝑚2)

𝑚2 ; (𝑏) holds due to ℓ ≥ 𝑑; and

ℎ(𝑥) , −𝑛
2
log
(︁
1 +

𝑥

2𝜎2

)︁
+ 𝑥 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂
.

Note that ℎ(𝑥) is convex in 𝑥; hence the maximum of ℎ(ℓ) for ℓ ∈ [𝑑, 𝑘] is achieved at either

ℓ = 𝑑 or ℓ = 𝑘, i.e.,

max
𝑑≤ℓ≤𝑘

ℎ(ℓ) ≤ max {ℎ(𝑑), ℎ(𝑘)} . (2.47)

We proceed to upper bound ℎ(𝑑) and ℎ(𝑘). Note that

(︂
1 +

log 2

log (1 + 𝑘/(2𝜎2))

)︂
log

(︂
1 +

𝑘

2𝜎2

)︂
≥ log

(︀
1 + 𝑘/𝜎2

)︀
. (2.48)

Thus, it follows from (2.16) that

𝑛 ≥ log (1 + 𝑘/𝜎2)

log
(︀
1 + 𝑘

2𝜎2

)︀
(︂
1 +

4 log log(𝑝/𝑘)

log(𝑝/𝑘)

)︂
𝑛info =

2𝑘 log(𝑝/𝑘)

log
(︀
1 + 𝑘

2𝜎2

)︀
(︂
1 +

4 log log(𝑝/𝑘)

log(𝑝/𝑘)

)︂
. (2.49)
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Then we conclude that

ℎ(𝑘) = −𝑛
2
log

(︂
1 +

𝑘

2𝜎2

)︂
+ 𝑘 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂

(2.49)
≤ −𝑘 log(𝑝/𝑘)− 4𝑘 log log(𝑝/𝑘) + 𝑘 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂

(2.45)
≤ −𝑘 log(𝑝/𝑘)− 4𝑘 log log(𝑝/𝑘) + 𝑘 log

(︂
𝑒3𝑝𝑘 log2(𝑝/𝑘)

𝑘2

)︂

= −2𝑘 log log(𝑝/𝑘) + 3𝑘. (2.50)

Analogously, we can upper bound ℎ(𝑑) as follows:

ℎ(𝑑) = −𝑛
2
log

(︂
1 +

𝑑

2𝜎2

)︂
+ 𝑑 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂

(2.49)
≤ −

(︂
1 +

4 log log(𝑝/𝑘)

log(𝑝/𝑘)

)︂
𝑘 log(𝑝/𝑘)

log (1 + 𝑘/(2𝜎2))
log

(︂
1 +

𝑑

2𝜎2

)︂
+ 𝑑 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂
. (2.51)

Let

𝑞(𝑥) , log
(︁
1 +

𝑥

2𝜎2

)︁
− 𝑥

𝑘
log

(︂
1 +

𝑘

2𝜎2

)︂

Note that 𝑞(𝑥) is concave in 𝑥, 𝑞(0) = 0, and 𝑞(𝑘) = 0. Thus

min
0≤𝑥≤𝑘

𝑞(𝑥) ≥ min {𝑞(0), 𝑞(𝑘)} ≥ 0.

Hence, 𝑞(𝑑) ≥ 0, i.e.,

𝑘 log

(︂
1 +

𝑑

2𝜎2

)︂
≥ 𝑑 log

(︂
1 +

𝑘

2𝜎2

)︂
.

Combining the last displayed equation with (2.51) gives that

ℎ(𝑑) ≤ −
(︂
1 +

4 log log(𝑝/𝑘)

log(𝑝/𝑘)

)︂
𝑑 log(𝑝/𝑘) + 𝑑 log

(︂
𝑒3𝑝𝑘

𝑑2

)︂

(2.45)
≤ −𝑑 log(𝑝/𝑘)− 4𝑑 log log(𝑝/𝑘) + 𝑑 log

(︂
𝑒3𝑝𝑘 log2(𝑝/𝑘)

𝑘2

)︂

≤ −2𝑑 log log(𝑝/𝑘) + 3𝑑.
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Combining the last displayed equation with (6.57) and (2.47), we get that

max
𝑑≤ℓ≤𝑘

ℎ(ℓ) ≤ −2𝑑 log log(𝑝/𝑘) + 3𝑑.

Combining the last displayed equation with (2.46) yields that

P
{︁
‖𝛽* − 𝛽*‖2 ≥ 2𝑑

}︁
≤ 𝑒−2𝑑 log log(𝑝/𝑘)+3𝑑

𝑘∑︁

ℓ=𝑑

𝑒−ℓ

≤ 𝑒−2𝑑 log log(𝑝/𝑘)+3𝑑 𝑒−𝑑

1− 𝑒−1

≤ 𝑒−2 log log(𝑝/𝑘) 𝑒2

1− 𝑒−1

=
𝑒2

(1− 𝑒−1) log2(𝑝/𝑘)
,

where the last inequality holds under the assumption log log(𝑝/𝑘) ≥ 1. This completes the proof

of Theorem 2.2.5.

2.5.2 Proof of Theorem 2.2.6

Proof. Under the planted model, we have

𝒯 (𝑋, 𝑌 ) ≤ ‖𝑊‖2
‖𝑊 +𝑋𝛽*‖2 .

Note that ‖𝑊‖2/𝜎2 ∼ 𝜒2(𝑛) and ‖𝑊+𝑋𝛽*‖2/(𝑘+𝜎2) ∼ 𝜒2(𝑛). It follows from the concentration

inequality for chi-square distributions that

P
{︁
‖𝑊‖2 ≥ 𝜎2

(︁
𝑛+ 2

√
𝑛𝑡+ 2𝑡

)︁}︁
≤ 𝑒−𝑡,

and

P
{︁
‖𝑊 +𝑋𝛽*‖2 ≤ (𝑘 + 𝜎2)

(︁
𝑛− 2

√
𝑛𝑡
)︁}︁

≤ 𝑒−𝑡.
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Therefore, for any 𝑡𝑛 such that 𝑡𝑛 → +∞ as 𝑛→ +∞,

𝑃

(︂
𝒯 (𝑋, 𝑌 ) ≥ 𝜎2

𝑘 + 𝜎2

𝑛+ 2
√
𝑛𝑡𝑛 + 2𝑡𝑛

𝑛− 2
√
𝑛𝑡𝑛

)︂
→ 0.

In particular, using for example 𝑡𝑛 = log 𝑛 = 𝑜 (𝑛) we have 𝑛+2
√
𝑛𝑡𝑛+2𝑡𝑛

𝑛−2
√
𝑛𝑡𝑛

= 1+ 𝑜 (1), we can easily

conclude from the definition of 𝜏 that

𝑃 (𝒯 (𝑋, 𝑌 ) ≥ 𝜏) → 0.

Meanwhile, under the the null model, we have

𝒯 (𝑋, 𝑌 ) =
min(𝛽*)′∈{0,1}𝑝,‖(𝛽*)′‖0=𝑘 ‖𝜆𝑊 −𝑋𝛽*‖2

‖𝜆𝑊‖2 .

Note that 𝑊 and 𝑋 are independent; thus we condition on 𝑋 in the sequel. We have

E
[︂

min
(𝛽*)′∈{0,1}𝑝,‖(𝛽*)′‖0=𝑘

‖𝜆𝑊 −𝑋𝛽*‖2
]︂

≥ min
𝑧1,...,𝑧𝑀∈R𝑛

E
[︂
min
𝑚∈[𝑀 ]

‖𝜆𝑊 − 𝑧𝑚‖2
]︂

≥ E
[︀
‖𝜆𝑊‖2

]︀
𝑀−2/𝑛

= 𝑛𝜆2𝜎2𝑀−2/𝑛, (2.52)

where 𝑀 =
(︀
𝑝
𝑘

)︀
and the last inequality holds because the distortion rate function 𝐷(𝑅) =

𝜎2 exp(2𝑅) provides a non-asymptotic lower bound on the distortion of an i.i.d. 𝒩 (0, 𝜎2) source

with rate 𝑅 = 1
𝑛
log𝑀 (See e.g. [CT06, Section 10.3.2]).

Define 𝑓 : R𝑛 → R,

𝑓(𝑤) = min
(𝛽*)′∈{0,1}𝑝,‖(𝛽*)′‖0=𝑘

‖𝜆𝑤 −𝑋𝛽*‖

It follows that 𝑓 is 𝜆-Lipschitz and thus in view of the Gaussian concentration inequality for

Lipschitz functions (see, e.g. [BLM13, Theorem 5.6]), we get that

P {|𝑓(𝑊 )− E [𝑓(𝑊 )]| ≥ 𝑡} ≤ 2 exp

(︂
− 𝑡2

2𝜆2𝜎2

)︂
. (2.53)
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Thus

var (𝑓(𝑊 )) = E
[︀
(𝑓(𝑊 )− E [𝑓(𝑊 )])2

]︀

=

∫︁ ∞

0

P
{︀
(𝑓(𝑊 )− E [𝑓(𝑊 )])2 ≥ 𝑡

}︀
𝑑𝑡

≤
∫︁ ∞

0

2 exp

(︂
− 𝑡

2𝜆2𝜎2

)︂
𝑑𝑡

= 4𝜆2𝜎2.

Combining the last displayed equation with (2.52) gives that

E [𝑓(𝑊 )] ≥
√︀
E [𝑓 2(𝑊 )]− 4𝜆2𝜎2 ≥ 𝜆𝜎

√︀
𝑛𝑀−2/𝑛 − 4.

Combining the last displayed equation with (2.53), we get that for any 𝑡𝑛 such that

𝑡𝑛 → +∞

as 𝑛→ +∞,

P
{︁
𝑓(𝑊 ) ≤ 𝜆𝜎

√︀
𝑛𝑀−2/𝑛 − 4− 𝜆𝜎𝑡𝑛

}︁
→ 0.

Also, it follows from the concentration inequality for chi-square distributions that

P
{︀
‖𝑊‖2 ≥ 𝜎2

(︀
𝑛+ 2

√
𝑛𝑡𝑛 + 2𝑡𝑛

)︀}︀
→ 0.

Thus, recalling that 𝑇 (𝑋, 𝑌 ) = 𝑓 2(𝑊 )/‖𝜆𝑊‖2, we get that

𝑄

⎛
⎜⎝𝑇 (𝑋, 𝑌 ) ≤

(︁√
𝑛𝑀−2/𝑛 − 4− 𝑡𝑛

)︁2
(︀
𝑛+ 2

√
𝑛𝑡𝑛 + 2𝑡𝑛

)︀

⎞
⎟⎠→ 0. (2.54)

By assumption (2.20), there exists a positive constant 𝛼 > 0 such that

𝑛 ≥ 2 log𝑀

log (1 + 𝑘/𝜎2) + log(1− 𝛼)
.
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It follows that

𝑀2/𝑛 ≤ (1− 𝛼)
(︀
1 + 𝑘/𝜎2

)︀
.

Since

𝜏 =
1

(1− 𝛼/2) (1 + 𝑘/𝜎2)

we have

𝜏 <
1

(1− 𝛼) (1 + 𝑘/𝜎2)
≤𝑀−2/𝑛.

By assumption (2.19), 𝑛𝑀−2/𝑛 → +∞. Hence, there exists a sequence of 𝑡𝑛 such that 𝑡𝑛 → +∞
and 𝑡𝑛 = 𝑜(

√
𝑛𝑀−1/𝑛). In particular, for this choice of 𝑡𝑛, combining the above we have

lim inf
𝑛

(︁√
𝑛𝑀−2/𝑛 − 4− 𝑡𝑛

)︁2
(︀
𝑛+ 2

√
𝑛𝑡𝑛 + 2𝑡𝑛

)︀ > 𝜏.

Hence from (2.54) we can conclude

𝑄 (𝑇 (𝑋, 𝑌 ) ≤ 𝜏) → 0.

Hence indeed,

𝑃 (𝑇 (𝑋, 𝑌 ) ≥ 𝜏) +𝑄 (𝑇 (𝑋, 𝑌 ) ≤ 𝜏) → 0,

which shows that 𝑇 (𝑋, 𝑌 ) with threshold 𝜏 indeed achieves the strong detection.

2.6 Conclusion and Open Problems

In this Chapter, we establish an All-or-Nothing information-theoretic phase transition for re-

covering a 𝑘-sparse vector 𝛽* ∈ {0, 1}𝑝 from 𝑛 independent linear Gaussian measurements

𝑌 = 𝑋𝛽* + 𝑊 with noise variance 𝜎2. In particular, we show that the MMSE normalized

by the trivial MSE jumps from 1 to 0 at a critical sample size 𝑛info = 2𝑘 log(𝑝/𝑘)
log(1+𝑘/𝜎2)

within a small

window of size 𝜖𝑛info. The constant 𝜖 > 0 can be made arbitrarily small by increasing the signal-

to-noise ratio 𝑘/𝜎2. Interestingly, the phase transition threshold 𝑛info is asymptotically equal to

the ratio of entropy 𝐻(𝛽*) and the AWGN channel capacity 1
2
log (1 + 𝑘/𝜎2). Towards estab-
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lishing this All-or-Northing phase transition, we also study a closely related hypothesis testing

problem, where the goal is to distinguish this planted model 𝑃 from a null model 𝑄𝜆 where

(𝑋, 𝑌 ) are independently generated and 𝑌𝑖
i.i.d.∼ 𝒩 (0, 𝜆2𝜎2). When 𝜆 = 𝜆0 =

√︀
𝑘/𝜎2 + 1, we show

that the sum of Type-I and Type-II testing errors also jumps from 1 to 0 at 𝑛info within a small

window of size 𝜖𝑛info.

Our impossibility results for 𝑛 ≤ (1−𝜖)𝑛info apply under a crucial assumption that 𝑘 ≤ 𝑝1/2−𝛿

for some arbitrarily small but fixed constant 𝛿 > 0. This naturally implies for Ω
(︀
𝑝1/2

)︀
≤ 𝑘 ≤

𝑜 (𝑝), two open problems for the identification of the detection and the recovery thresholds,

respectively.

For detection, as argued in 2.9, 𝑘 = 𝑜
(︀
𝑝1/2

)︀
is needed for 𝑛info being the detection threshold,

because weak detection is achieved for all 𝑛 = Ω(𝑛info) when 𝑘 = Ω(𝑝1/2), that is the weak

detection threshold becomes 𝑜 (𝑛info). The identification of the precise detection threshold when

Ω(𝑝1/2) ≤ 𝑘 ≤ 𝑜 (𝑝) is an interesting open problem.

For recovery, however, we believe that the recovery threshold still equals 𝑛info when Ω
(︀
𝑝1/2

)︀
≤

𝑘 ≤ 𝑜(𝑝). To prove this, we propose to study the detection problem where both the (conditional)

mean and the covariance are matched between the planted and null models. Specifically, let

us consider a slightly modified null model 𝑄 with the matched conditional mean E𝑄 [𝑌 |𝑋] =

E𝑃 [𝑌 |𝑋] = 𝑘
𝑝
𝑋1 and the matched covariance E𝑄

[︀
𝑌 𝑌 ⊤]︀ = E𝑃

[︀
𝑌 𝑌 ⊤]︀, where 1 denotes the

all-one vector. For example, if 𝑋,𝑊 are defined as before and 𝑌 , 𝑘
𝑝
𝑋1+ 𝜆𝑊 with 𝜆 equal to√︁

𝑘
𝜎2 + 1− 𝑘2

𝑝
, then both the mean and covariance constraints are satisfied. It is an open problem

whether this new null model is indistinguishable from the planted model 𝑃 when 𝑛 ≤ (1− 𝜖)𝑛info

and Ω
(︀
𝑝1/2

)︀
≤ 𝑘 ≤ 𝑜(𝑝). If the answer is affirmative, then we may follow the analysis road map

in this Chapter to further establish the impossibility of recovery.

Finally, another interesting question for future work is to understand the extent to which

the All-or-Nothing phenomenon applies beyond the binary vectors setting or the Gaussian as-

sumptions on (𝑋,𝑊 ). In this direction, some recent work [Ree17] has shown that under mild

conditions on the distribution of 𝛽*, the distance between the planted and null models can be

bounded in term of “exponential moments” similar to the ones studied in 2.7.
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2.7 Appendix A: Hypergeometric distribution and expo-

nential moment bound

Throughout this section, we fix

𝜆2 = 𝑘/𝜎2 + 1, and 𝜏 = 𝑘

(︂
1− 1

log2 𝜆2

)︂
. (2.55)

The main focus of this section is to give tight characterization of the following “exponential”

moment:

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆∈[𝑎,𝑏]}

]︃
.

for a given interval [𝑎, 𝑏]. It turns out this “exponential” moment exhibit quantitatively different

behavior in the following three different regimes of overlap 𝑆: small regime (𝑠 ≤ 𝜖𝑘), intermediate

regime (𝜖𝑘 < 𝑠 ≤ 𝜏), and large regime (𝑠 ≥ 𝜏), where 𝜖 is given in (2.57).

In the sequel, we first prove 2.7.2, which focuses on the small and intermediate regimes under

the assumption 𝑛 ≤ 𝑛info. Then we prove 2.7.5, which focuses on the large regime under the

assumption 𝑛 ≤ (1− 𝛼)𝑛info/2 for 𝛼 ∈ (0, 1/2).

We start with a simple lemma, bounding the probability mass of an hypergeometric distri-

bution.

Lemma 2.7.1. Let 𝑝, 𝑘 ∈ N. Then for 𝑆 ∼ Hyp(𝑝, 𝑘, 𝑘) and any 𝑠 ∈ [𝑘],

P (𝑆 = 𝑠) ≤
(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

.

Proof. We have

P (𝑆 = 𝑠) =

(︂
𝑘

𝑠

)︂(︀𝑝−𝑘
𝑘−𝑠

)︀
(︀
𝑝
𝑘

)︀ ≤
(︂
𝑘

𝑠

)︂(︀ 𝑝
𝑘−𝑠

)︀
(︀
𝑝
𝑘

)︀ =

(︂
𝑘

𝑠

)︂
(𝑝− 𝑘)!(𝑘)!

(𝑝− 𝑘 + 𝑠)!(𝑘 − 𝑠)!
≤
(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

.

Next, we upper bound the “exponential” moment in the small overlap regime (𝑠 ≤ 𝜖𝑘), and

the intermediate overlap regime (𝜖𝑘 < 𝑠 ≤ 𝜏).

Lemma 2.7.2. Suppose 𝑛 ≤ 𝑛info.
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∙ If 𝑘 ≤ 𝑝
1
2
−𝛿 for an arbitrarily small but fixed constant 𝛿 ∈ (0, 1

2
) and 𝑘/𝜎2 ≥ 𝐶(𝛿) for a

sufficiently large constant 𝐶(𝛿) only depending on 𝛿, then for any 0 ≤ 𝜖 ≤ 1/2,

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≤𝜖𝑘}

]︃
= 1 + 𝑜𝑝(1), (2.56)

∙ If 𝑘 = 𝑜(𝑝) and 𝑘/𝜎2 ≥ 𝐶 for a sufficiently large universal constant 𝐶, then for

𝜖 = 𝜖𝑘,𝑝 =
log log(𝑝/𝑘)

2 log(𝑝/𝑘)
, (2.57)

it holds that

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝜖𝑘<𝑆≤𝜏}

]︃
= 𝑜𝑝(1), (2.58)

Proof. Using Lemma 2.7.1,

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≤𝜏}

]︃
= P {𝑆 = 0}+

⌊𝜏⌋∑︁

𝑠=1

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛 log

(︁
1− 𝑠

𝑘+𝜎2

)︁
.

Note that

P {𝑆 = 0} =

(︀
𝑝−𝑘
𝑘

)︀
(︀
𝑝
𝑘

)︀ ≥
(︂
1− 𝑘

𝑝

)︂𝑘

≥ 1− 𝑘2/𝑝 = 1 + 𝑜𝑝(1),

where the last equality holds due to 𝑘 ≤ 𝑝1/2−𝛿 for some constant 𝛿 ∈ (0, 1/2). Thus, to show

(2.56) it suffices to show

⌊𝜖𝑘⌋∑︁

𝑠=1

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
= 𝑜𝑝(1),

and to show (2.58) it suffices to show

⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
= 𝑜𝑝(1),

We first prove (2.56).
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Proof of (2.56): Using the fact that
(︀
𝑘
𝑠

)︀
≤ 𝑘𝑠, we have

⌊𝜖𝑘⌋∑︁

𝑠=1

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
≤

⌊𝜖𝑘⌋∑︁

𝑠=1

𝑘𝑠
(︂

𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁

=

⌊𝜖𝑘⌋∑︁

𝑠=1

𝑒
−𝑠 log 𝑝−𝑘+1

𝑘2
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁

=

⌊𝜖𝑘⌋∑︁

𝑠=1

𝑒𝑓(𝑠)−𝑠 log 𝑝−𝑘+1
𝑝 ,

where for 𝑠 ∈ [1, 𝜖𝑘] let the real-valued function 𝑓 be given by

𝑓(𝑠) = −𝑠 log 𝑝

𝑘2
− 𝑛info log

(︂
1− 𝑠

𝑘 + 𝜎2

)︂
.

Claim 2.7.3. Suppose 𝑘 ≤ 𝑝1/2−𝛿 for a constant 𝛿 ∈ (0, 1/2) and 𝜖 ≤ 1/2. There exists a constant

𝐶1 = 𝐶1(𝛿) > 0, such that if 𝑘/𝜎2 ≥ 𝐶1 then it holds that for any 𝑠 ∈ [1, 𝜖𝑘], 𝑓(𝑠) ≤ −1
2
𝑠 log 𝑝

𝑘2
.

Proof of the Claim. Standard calculus implies that for 𝑥 ∈ (0, 1), log(1−𝑥) ≥ −(1+𝑥)𝑥. Hence,

for 0 ≤ 𝑥 ≤ 𝜖 ≤ 1/2,

log(1− 𝑥) ≥ −(1 + 𝜖)𝑥. (2.59)

Using this inequality it follows that for since for any 𝑠 ∈ [1, 𝜖𝑘] 𝑠
𝑘+𝜎2 ≤ 𝜖, it also holds

𝑓(𝑠) ≤ −𝑠 log 𝑝

𝑘2
+ 𝑛info(1 + 𝜖)

𝑠

𝑘 + 𝜎2
= 𝑠

(︂
− log

𝑝

𝑘2
+
𝑛(1 + 𝜖)

𝑘 + 𝜎2

)︂
≤ −1

2
𝑠 log

𝑝

𝑘2
,

where the last inequality holds under the assumption that

𝑛info ≤
(𝑘 + 𝜎2) log 𝑝

𝑘2

2(1 + 𝜖)
.

Recall that 𝑛info =
2𝑘 log(𝑝/𝑘)
log(1+𝑘/𝜎2)

. Hence it suffices to show that

2𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)
≤ (𝑘 + 𝜎2) log 𝑝

𝑘2

2(1 + 𝜖)
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which holds if and only if

[︂
1− 4(1 + 𝜖)

(1 + 𝜎2/𝑘) log(1 + 𝑘/𝜎2)

]︂
log

𝑝

𝑘
≥ log 𝑘. (2.60)

By assumption, 𝑘 ≤ 𝑝1/2−𝛿 for 𝛿 ∈ (0, 1
2
). Hence, (2.60) is satisfied if

1− 4(1 + 𝜖)

(1 + 𝜎2/𝑘) log(1 + 𝑘/𝜎2)
≥

1
2
− 𝛿

1
2
+ 𝛿

.

Since 𝜖 ≤ 1/2, there exists a constant 𝐶1 = 𝐶1(𝛿) > 0 depending only on 𝛿 such that if

𝑘

𝜎2
≥ 𝐶1

then the last displayed equation is satisfied. This completes the proof of the claim.

Using the above claim we conclude that

⌊𝜖𝑘⌋∑︁

𝑠=1

𝑒𝑓(𝑠)−𝑠 log 𝑝−𝑘+1
𝑝 ≤

⌊𝜖𝑘⌋∑︁

𝑠=1

𝑒−
1
2
𝑠(log(𝑝/𝑘2)+2 log 𝑝−𝑘+1

𝑝 ) ≤ 𝑒
− 1

2
log

(𝑝−𝑘+1)2

𝑝𝑘2

1− 𝑒
− 1

2
log

(𝑝−𝑘+1)2

𝑝𝑘2

= 𝑜𝑝(1),

where the last equality holds due to 𝑘 ≤ 𝑝
1
2
−𝛿.

Next we prove (2.58). Again it suffices to prove (2.58) for 𝑛 = 𝑛info.

Proof of (2.58): Note that
(︀
𝑘
𝑠

)︀
≤ 2𝑘. Hence,

⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
≤ 2𝑘

⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉

(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁

= 2𝑘
⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉
𝑒
−𝑠 log 𝑝

𝑘
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
−𝑠 log

(𝑝−𝑘+1)
𝑝 .

Define for 𝑠 ∈ [0, 𝑘], the function 𝑔 given by

𝑔(𝑠) , −𝑠 log 𝑝
𝑘
− 𝑛info log

(︂
1− 𝑠

𝑘 + 𝜎2

)︂
. (2.61)
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The function 𝑔 is convex in 𝑠 for 𝜖𝑘 ≤ 𝑠 ≤ 𝜏 , as the addition of two convex functions. Hence, the

maximum of 𝑔(𝑠) over 𝑠 ∈ [𝜖𝑘, 𝜏 ] is achieved at either 𝑠 = 𝜖𝑘 or 𝑠 = 𝜏. Thus it suffices to upper

bound 𝑔(𝜖𝑘) and 𝑔(𝜏).

Claim 2.7.4. There exist a universal constant 𝐶2 > 0 such that if 𝑘/𝜎2 ≥ 𝐶2, then 𝑔(𝜏) ≤
−1

2
𝑘 log(𝑝/𝑘) and 𝑔(𝜖𝑘) ≤ − 𝜖𝑘

2
log 𝑝

𝑘
.

Proof of the Claim. We first upper bound 𝑔(𝜏).

𝑔 (𝜏) ≤ −𝜏 log 𝑝
𝑘
− 𝑛info log

(︁
1− 𝜏

𝑘

)︁

= −
(︂
1− 1

log2 𝜆2

)︂
𝑘 log

𝑝

𝑘
+

4𝑘 log(𝑝/𝑘) log log(𝜆2)

log(𝜆2)
,

where the last equality holds by plugging in the expressions of 𝜏 and 𝑛info.

Recall that 𝜆2 = 1 + 𝑘/𝜎2. Hence, there exists a universal constant 𝐶2 > 0 such that if

𝑘/𝜎2 ≥ 𝐶2, then

−
(︂
1− 1

log2 𝜆2

)︂
𝑘 log

𝑝

𝑘
+

4𝑘 log(𝑝/𝑘) log log(𝜆2)

log(𝜆2)
≤ −1

2
𝑘 log

𝑝

𝑘
.

Combining the last two displayed equations yields that 𝑔(𝜏) ≤ −1
2
𝑘 log(𝑝/𝑘).

For 𝑔(𝜖𝑘), applying (2.59), we get that

𝑔(𝜖𝑘) = −𝜖𝑘 log 𝑝
𝑘
− 𝑛info log

(︂
1− 𝜖𝑘

𝑘 + 𝜎2

)︂
≤ −𝜖𝑘 log 𝑝

𝑘
+
𝑛info𝜖𝑘

𝑘 + 𝜎2
(1 + 𝜖)

which equals

𝜖𝑘

(︂
− log

𝑝

𝑘
+
𝑛info(1 + 𝜖)

𝑘 + 𝜎2

)︂
.

Note that we can conclude 𝑔(𝜖𝑘) ≤ − 𝜖𝑘
2
log 𝑝

𝑘
if

− log
𝑝

𝑘
+
𝑛info(1 + 𝜖)

𝑘 + 𝜎2
≤ −1

2
log

𝑝

𝑘

which holds if and only if

𝑛info =
2𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)
≤ (𝑘 + 𝜎2) log(𝑝/𝑘)

2(1 + 𝜖)
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or equivalently

4(1 + 𝜖)

(1 + 𝜎2/𝑘) log(1 + 𝑘/𝜎2)
≤ 1.

Note that there exists a universal constant 𝐶2 > 0 such that if 𝑘/𝜎2 ≥ 𝐶2 then the last displayed

inequality is satisfied and hence 𝑔(𝜖𝑘) ≤ − 𝜖𝑘
2
log 𝑝

𝑘
where the last inequality holds by choosing

𝐶2 sufficiently large.

Using the above claim we now have that if 𝑘/𝜎2 ≥ 𝐶2,

⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛info log

(︁
1− 𝑠

𝑘+𝜎2

)︁
≤ 2𝑘

⌊𝜏⌋∑︁

𝑠=⌈𝜖𝑘⌉
𝑒𝑔(𝑠)−𝑠 log

(𝑝−𝑘+1)
𝑝

≤ 𝑒𝑘 log 2+log 𝑘− 𝜖𝑘
2

log 𝑝
𝑘
−𝑘 log

(𝑝−𝑘+1)
𝑝 = 𝑜𝑝(1),

where the last equality holds due to log 𝑘 ≤ 𝑘, 𝑘 = 𝑜(𝑝), and that

𝜖𝑘

2
log

𝑝

𝑘
= −𝑘

4

log log(𝑝/𝑘)

log(𝑝/𝑘)
log

𝑝

𝑘
= −𝑘

4
log log(𝑝/𝑘).

Finally, we upper bound the “exponential” moment in the large overlap regime (𝑠 ≥ 𝜏) where

𝜏 is defined in (2.55).

Lemma 2.7.5. Suppose that 𝑘 ≤ 𝑐𝑝 for 𝑐 ∈ (0, 1) and 𝑘/𝜎2 ≥ 𝐶 for a sufficiently large universal

constant 𝐶. If 𝑛 ≤ 1
2
(1− 𝛼)𝑛info for some 𝛼 ≤ 1/2, then

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≥𝜏}

]︃
≤ exp

(︂
−𝛼𝑘 log 𝑝

𝑘
+ log

2− 𝑐

1− 𝑐

)︂
. (2.62)

Proof. Using Lemma 2.7.1, we get that
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Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≥𝜏}

]︃
≤

𝑘∑︁

𝑠=⌊𝜏⌋

(︂
𝑘

𝑠

)︂(︂
𝑘

𝑝− 𝑘 + 1

)︂𝑠

𝑒
−𝑛 log

(︁
1− 𝑠

𝑘+𝜎2

)︁

≤
𝑘∑︁

𝑠=⌊𝜏⌋

(︂
𝑘

𝑠

)︂
𝑒
−𝑠 log 𝑝

𝑘
−𝑛 log

(︁
1− 𝑠

𝑘+𝜎2

)︁
−𝑠 log 𝑝−𝑘+1

𝑝

=
𝑘∑︁

𝑠=⌊𝜏⌋

(︂
𝑘

𝑠

)︂
𝑒𝑔𝑛(𝑠)−𝑠 log 𝑝−𝑘+1

𝑝 ,

where 𝑔𝑛(𝑠) is given by

𝑔𝑛(𝑠) , −𝑠 log 𝑝
𝑘
− 𝑛 log

(︂
1− 𝑠

𝑘 + 𝜎2

)︂
.

Note that 𝑔𝑛(𝑠) is convex in 𝑠 for 𝜏 ≤ 𝑠 ≤ 𝑘. Hence, the maximum of 𝑔𝑛(𝑠) over 𝑠 ∈ [𝜏, 𝑘] is

achieved at either 𝑠 = 𝜏 or 𝑠 = 𝑘. In view of (2.61) and Claim 2.7.4, for all 𝑛 ≤ 𝑛info.

𝑔𝑛(𝜏) ≤ 𝑔𝑛info
(𝜏) = 𝑔(𝜏) ≤ −1

2
𝑘 log

𝑝

𝑘
.

Thus it remains to upper bound 𝑔𝑛(𝑘).

Claim 2.7.6. Assume 𝑛 ≤ 1
2
(1− 𝛼)𝑛info for some 𝛼 > 0. Then 𝑔𝑛(𝑘) ≤ −𝛼𝑘 log(𝑝/𝑘).

Proof of the Claim. For all 𝑛 ≤ 1
2
(1− 𝛼)𝑛info,

𝑔𝑛(𝑘) = −𝑘 log 𝑝
𝑘
− 𝑛 log

(︂
1− 𝑘

𝑘 + 𝜎2

)︂

= −𝑘 log 𝑝
𝑘
+

1

2
(1− 𝛼)𝑛info log

(︂
1 +

𝑘

𝜎2

)︂

= −𝑘 log 𝑝
𝑘
+ (1− 𝛼)𝑘 log

(︁𝑝
𝑘

)︁

= −𝛼𝑘 log 𝑝
𝑘
.

In view of the above claim and the assumption that 𝛼 ≤ 1/2, we conclude that for all
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𝑛 ≤ 1
2
(1− 𝛼)𝑛info,

Exp𝑆∼Hyp(𝑝,𝑘,𝑘)

[︃(︂
1− 𝑆

𝑘 + 𝜎2

)︂−𝑛

1{𝑆≥𝜏}

]︃
≤

𝑘∑︁

𝑘=⌊𝜏⌋

(︂
𝑘

𝑠

)︂
𝑒−𝛼𝑘 log 𝑝

𝑘
−𝑠 log 𝑝−𝑘+1

𝑝

≤ 𝑒−𝛼𝑘 log 𝑝
𝑘

𝑘∑︁

𝑠=0

(︂
𝑘

𝑠

)︂(︂
𝑝

𝑝− 𝑘 + 1

)︂𝑠

≤ 𝑒−𝛼𝑘 log 𝑝
𝑘

(︂
1 +

𝑝

𝑝− 𝑘 + 1

)︂𝑘

≤ 𝑒−𝛼𝑘 log 𝑝
𝑘
+𝑘 log 2−𝑐

1−𝑐 ,

where the last equality holds due to the assumption 𝑘 ≤ 𝑐𝑝.

2.8 Appendix B: Probability of the conditioning event

In this section, we upper bound the probability that the conditioning event ℰ𝛾,𝜏 defined in (2.11)

does not happen.

Lemma 2.8.1. Consider the set ℰ𝛾,𝜏 defined in (2.11). Let 𝜏 = 𝑘(1 − 𝜂) for some 𝜂 ∈ [0, 1].

Then we have

P
{︀
(𝑋, 𝛽*) ∈ ℰ𝑐

𝛾,𝜏

}︀
≤ exp

{︂
−𝑛𝛾

4
+ 𝜂𝑘 log

(︂
𝑒2𝑝

𝜂2𝑘

)︂}︂
.

Furthermore, for

𝜂 =
1

log2(1 + 𝑘/𝜎2)
, and 𝛾 ≥ 𝑘 log(𝑝/𝑘)

𝑛 log(1 + 𝑘/𝜎2)
∨ 𝑘

𝑛

then there exists a universal constant 𝐶 > 0 such that if 𝑘/𝜎2 ≥ 𝐶, then

P
{︀
(𝑋, 𝛽*) ∈ ℰ𝑐

𝛾,𝜏

}︀
≤ exp

{︁
−𝑛𝛾

8

}︁
.

Proof. Fix 𝛽* to be a 𝑘-sparse binary vector in {0, 1}𝑝. Let (𝛽*)′ denote another 𝑘-sparse binary

vector and 𝑠 = ⟨𝛽*, (𝛽*)′⟩. We have 𝑋(𝛽* + (𝛽*)′) ∼ 𝒩 (0, 2(𝑘 + 𝑠)I𝑛) and therefore

‖𝑋(𝛽* + (𝛽*)′)‖2
2(𝑘 + 𝑠)

∼ 𝜒2
𝑛.

87



Observe also that the number of different (𝛽*)′ with ⟨𝛽*, (𝛽*)′⟩ ≥ 𝜏 is at most

⌊𝜂𝑘⌋∑︁

ℓ=0

(︂
𝑘

ℓ

)︂(︂
𝑝− 𝑘

ℓ

)︂

by counting on the different choices of positions of the entries where (𝛽*)′ differ from 𝛽*. Com-

bining the two observations it follows from the union bound that

P
{︀
(𝑋, 𝛽*) ∈ ℰ𝑐

𝛾,𝜏 | 𝛽*}︀ ≤ 𝑄𝜒2
𝑛
(𝑛(2 + 𝛾))

⌊𝜂𝑘⌋∑︁

ℓ=0

(︂
𝑘

ℓ

)︂(︂
𝑝− 𝑘

ℓ

)︂
, (2.63)

where 𝑄𝜒2
𝑛
(𝑥) is the tail function of the chi-square distribution.

For all 𝑥 > 0, we have (see, e.g., [LM00, Lemma 1]:

𝑄𝜒2
𝑛

(︀
𝑛(1 +

√
𝑥+ 𝑥/2)

)︀
≤ 𝑒−

𝑛𝑥
4 . (2.64)

Noting that √
𝛾 + 𝛾/2 ≤ 1 + 𝛾 for all 𝛾 > 0, we see that 𝑄𝜒2

𝑛
(𝑛(2 + 𝛾)) ≤ exp {−𝑛𝛾/4} .

Next, using the inequalities
(︀
𝑎
𝑏

)︀
≤ (𝑎𝑒

𝑏
)𝑏 for 𝑎, 𝑏 ∈ Z>0 with 𝑎 < 𝑏, that 𝑥 → 𝑥 log 𝑥 decreases

in (0, 1
𝑒
), and

∑︀𝑑
𝑖=0

(︀
𝑚
𝑖

)︀
≤ (𝑚𝑒

𝑑
)𝑑 for 𝑑,𝑚 ∈ Z>0 with 𝑑 < 𝑚 (see, e.g., [Kum10]), we get that

⌊𝜂𝑘⌋∑︁

ℓ=0

(︂
𝑘

ℓ

)︂(︂
𝑝− 𝑘

ℓ

)︂
≤

⌊𝜂𝑘⌋∑︁

ℓ=0

(︂
𝑒𝑘

ℓ

)︂ℓ(︂
𝑝− 𝑘

ℓ

)︂

≤
(︂
𝑒

𝜂

)︂𝜂𝑘 ⌊𝜂𝑘⌋∑︁

ℓ=0

(︂
𝑝− 𝑘

ℓ

)︂

≤
(︂
𝑒2𝑝

𝜂2𝑘

)︂𝜂𝑘

.

Combining the above expressions completes the first part of the proof of the Lemma.

For the second part, note that under our choice of 𝜂,

−𝑛𝛾
4

+ 𝜂𝑘 log

(︂
𝑒2𝑝

𝜂2𝑘

)︂
= −𝑛𝛾

4
+
𝑘 (log(𝑝/𝑘) + 4 log log(1 + 𝑘/𝜎2) + 2)

log2(1 + 𝑘/𝜎2)
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Under the choice of 𝛾, there exists a universal constant 𝐶 > 0 such that if if 𝑘/𝜎2 ≥ 𝐶, then

𝑛𝛾

16
≥ 𝑘 log(𝑝/𝑘)

log2(1 + 𝑘/𝜎2)

𝑛𝛾

16
≥ 𝑘 (4 log log(1 + 𝑘/𝜎2) + 2)

log2(1 + 𝑘/𝜎2)
.

Combining the last two displayed equation yields that

−𝑛𝛾
4

+ 𝜂𝑘 log

(︂
𝑒2𝑝

𝜂2𝑘

)︂
≤ −𝑛𝛾

8
.

This completes the proof of the lemma.

2.9 Appendix C: The reason why 𝑘 = 𝑜(𝑝1/2) is needed for

weak detection threshold 𝑛info

This section shows that weak detection between the planted model 𝑃 and the null model 𝑄𝜆 is

possible for any choice of 𝜆 > 0 and for all 𝑛 = Ω𝑝(𝑛info), if 𝑘 = Ω𝑝(𝑝
1/2), 𝑘/𝜎2 = Ω𝑝(1), and

log(𝑝/𝑘) = Ω𝑝 (log(1 + 𝑘/𝜎2)). In particular, we show the following proposition.

Proposition 2.9.1. Suppose

𝑛𝑘2

𝑝 (𝑘 + 𝜎2 − 𝑘2/𝑝)
= Ω𝑝(1). (2.65)

Then weak detection is information-theoretically possible.

Remark 2.9.2. If 𝑘/𝜎2 = Ω𝑝(1) and 𝑘/𝑝 is bounded away from 1, then (2.66) is equivalent to

𝑛𝑘

𝑝
= Ω𝑝(1).

Recall that

𝑛info =
2𝑘 log(𝑝/𝑘)

log(1 + 𝑘/𝜎2)
.

Therefore, if furthermore 𝑘 = Ω𝑝(𝑝
1/2) and log(𝑝/𝑘) = Ω𝑝 (log(1 + 𝑘/𝜎2)),
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then 𝑛info𝑘/𝑝 = Ω𝑝(1) and hence weak detection is possible for all 𝑛 = Ω𝑝(𝑛info).

Proof. Let 𝛽* = E [𝛽*] and consider the test statistic

𝒯 (𝑋, 𝑌 ) =
⟨︀
𝑌,𝑋𝛽*

⟩︀
;

we declare planted model if 𝒯 (𝑋, 𝑌 ) ≥ 0 and null model otherwise. Let 𝐴,𝐵 be independent

𝑛-dimensional standard Gaussian vectors. Then we have that

(︀
𝑋𝛽*, 𝑌

)︀ 𝑑
=

⎧
⎪⎨
⎪⎩

(︁√︀
𝑘2/𝑝𝐴,

√︀
𝑘2/𝑝𝐴+

√︀
𝑘 + 𝜎2 − 𝑘2/𝑝𝐵

)︁
if (𝑋, 𝑌 ) ∼ 𝑃

(︁√︀
𝑘2/𝑝𝐴, 𝜆𝜎𝐵

)︁
if (𝑋, 𝑌 ) ∼ 𝑄𝜆.

Hence,

𝑄𝜆

(︀⟨︀
𝑌,𝑋𝛽*

⟩︀
≤ 0
)︀
=

1

2
,

and

𝑃
(︀⟨︀
𝑌,𝑋𝛽*

⟩︀
≤ 0
)︀
= E

[︃
𝑄

(︃√︃
𝑘2/𝑝

𝑘 + 𝜎2 − 𝑘2/𝑝
‖𝐴‖

)︃]︃
,

where 𝑄(𝑥) =
∫︀∞
𝑥
(2𝜋)−1/2 exp(−𝑡2/2) t. is the tail function of the standard Gaussian.

Therefore, as long as
√︁

𝑘2/𝑝
𝑘+𝜎2−𝑘2/𝑝

‖𝐴‖ does not converge to 0 in probability, then 𝑃
(︀⟨︀
𝑌,𝑋𝛽*

⟩︀
≤ 0
)︀
≤

1/2− 𝜖 for some positive constant 𝜖 > 0. Thus,

𝑃
(︀⟨︀
𝑌,𝑋𝛽*

⟩︀
< 0
)︀
+𝑄𝜆

(︀⟨︀
𝑌,𝑋𝛽*

⟩︀
≥ 0
)︀
≤ 1− 𝜖;

hence weak detection is possible. Since ‖𝐴‖22 ∼ 𝜒2
𝑛 highly concentrates on 𝑛, it follows that if

𝑛𝑘2

𝑝 (𝑘 + 𝜎2 − 𝑘2/𝑝)
= Ω𝑝(1), (2.66)

then weak detection is possible.
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Chapter 3

The Computational-Statistical Gap for

High Dimensional Regression. The Hard

Regime.

3.1 Introduction

As mentioned in Chapter 1, this Chapter and Chapter 4 studies the computational-statistical

gap for the high dimensional linear regression model. We study the model under the assumption

described in Subsection 1.1.1. Specifically, we adopt the assumptions that 𝑋 ∈ R𝑛×𝑝 and 𝑊 ∈
R𝑛×1 are independent matrices with 𝑋𝑖𝑗

i.i.d.∼ 𝒩 (0, 1) and 𝑊𝑖
i.i.d.∼ 𝒩 (0, 𝜎2) for some 𝜎2 > 0, and

finally 𝛽* is an arbitrary but fixed binary 𝑘-sparse vector.

The goal of this Chapter and Chapter 4 is to study whether there is a fundamental explanation

of the computational statistical gap exhibited by the model using the notion of the Overlap Gap

Property (see Subsection 1.3). We start with providing more details and an extended literature

review on the computational-statistical gap of the model.

We begin with the computational limit. A lot of work has been devoted in particular to

finding computationally efficient ways for recovering the binary 𝑘-sparse 𝛽* from noisy linear

measurements 𝑌 = 𝑋𝛽* +𝑊 . Note that recovering 𝛽* is equivalent with recovering its support.

In the noiseless setting (𝑊 = 0), Donoho and Tanner show in [DT10] that the simple linear

program: min ‖𝛽‖1 subject to 𝑌 = 𝑋𝛽, will have with high probability (w.h.p.) 𝛽* as its
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optimal solution if 𝑛 ≥ 2 (1 + 𝜖) 𝑘 log 𝑝. Here and below ‖ · ‖1 and ‖ · ‖2 denote the standard ℓ1

and ℓ2 norms, respectively: ‖𝑥‖1 =
∑︀

1≤𝑖≤𝑝 |𝑥𝑖| and ‖𝑥‖2 =
(︁∑︀

1≤𝑖≤𝑝 𝑥
2
𝑖

)︁ 1
2 for every 𝑥 ∈ R𝑝. In

the noisy setting, sufficient and necessary conditions have been found so that the ℓ1- constrained

quadratic programming, also known as LASSO: min𝛽∈R𝑝{‖𝑌 −𝑋𝛽‖22+𝜆𝑝‖𝛽‖1}, for appropriately

chosen 𝜆𝑝 > 0, recovers the binary 𝑘-sparse 𝛽*, [MB06b],[Wai09b],[ZY06]. See also the recent

book [FR13]. In particular, Wainwright [Wai09b] showed that if 𝑋 is a Gaussian random matrix

and 𝑊 is a Gaussian noise vector with variance 𝜎2 such that 𝜎2

𝑘
→ 0, then for every arbitrarily

small constant 𝜖 > 0 and for 𝑛 > (1 + 𝜖) (2𝑘 + 𝜎2) log 𝑝, the LASSO based method recovers the

support of 𝛽* exactly w.h.p. At the same time given any 𝜖 > 0, if 𝑛 < (1− 𝜖) (2𝑘 + 𝜎2) log 𝑝,

then the LASSO based method provably fails to recover the support of 𝛽* exactly, also w.h.p.

We note that the impact of 𝜎2 on this threshold is asymptotically negligible when 𝜎2/𝑘 → 0. It

will be convenient for us to keep it though and thus we denote (2𝑘 + 𝜎2) log 𝑝 by 𝑛alg. At the

present time no tractable (polynomial time) algorithms are known for the support recovery when

𝑛 ≤ 𝑛alg.

On the complimentary direction, results regarding the information theoretic limits for the

problem of support recovery have also been obtained [DT10],[Wai09a],[WWR10], [RG12], [RG13],

[SC15]. These papers are devoted to obtaining bounds on the minimum sampling size 𝑛 so that

the support recovery problem is solvable by any algorithmic methods, regardless of the algorith-

mic complexity, including for example the brute force method of exhaustive search. An easy

corollary of Theorem 2 in [Wai09a], which follows from an appropriate use of Fano’s inequality,

when applied to our context below involving vectors 𝛽* with binary values, yields one information-

theoretic lower bound. it is shown that if 𝑛 < (1− 𝜖)𝜎2 log 𝑝, then for every support recovery

algorithm, a binary vector 𝛽* can be constructed in such a way that the underlying algorithm

fails to recover 𝛽* exactly, with probability at least 𝜖
2
. Interestingly, this lower bound value does

not depend on the value of 𝑘. Viewing the problem from the Gaussian channel perspective,

vector 𝑌 can be viewed as a noisy encoding of 𝛽* through the code book 𝑋 and in our case the

sparsity 𝑘 becomes the strength of this Gaussian channel. Using the tight characterization of the

Gaussian communication channel capacity (see e.g. Theorem 10.1.1. in [CT06]) when 𝑘 = 1, the

information theoretic limit of recovering the unit bit support of 𝛽* is log 𝑝/ log(1 + 1/𝜎2) which

is 𝜎2 log 𝑝 asymptotically when 𝜎 is large. We let 𝑛inf,1 , 𝜎2 log 𝑝. Subsequently, it was shown by
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Wang et al [WWR10] using similar ideas that the exact recovery of 𝛽* is information theoreti-

cally impossible when 𝑛 smaller than 2𝑘 log 𝑝/ log(1+ 2𝑘/𝜎2), which is the information theoretic

limit of this Gaussian channel for general 𝑘. Furthermore, Rad in [Rad11] showed that it is

information-theoretically possible to recover exactly 𝛽* with 𝐶𝑘 log 𝑝/ log(1+2𝑘/𝜎2) samples for

some sufficiently large constant 𝐶 > 0. Finally, in Chapter 2 we established that the threshold

𝑛info , 2𝑘 log 𝑝/ log(1 + 2𝑘/𝜎2) is the exact statistical limit of the problem, when 𝛽* is chosen

from a uniform prior over the binary 𝑘-sparse vectors and 𝑘/𝜎2 is sufficiently large. Notice that

there is a negligible discrepancy between the value of 𝑛info defined here and in Chapter 2 which

is 2𝑘 log 𝑝/ log(1 + 𝑘/𝜎2). The reason the discrepancy is negligible is because as 𝑘/𝜎2 grows,

which is the regime of interest, the ratio between the two thresholds 2𝑘 log 𝑝/ log(1+2𝑘/𝜎2) and

2𝑘 log 𝑝/ log(1+ 𝑘/𝜎2) converges to one. The critical threshold 𝑛info will play a fundamental role

in the results of this Chapter.

The regime 𝑛 ∈ [𝑛info, 𝑛alg] remains largely unexplored from the algorithmic perspective and

comprises what is known as a computational statistical gap (see the Introduction of the thesis

- Chapter 1 - for more details on computational-statistical gaps) and the results presented in

this Chapter are devoted to studying this gap. Specifically we would like to study the following

question:

Is there a fundamental explanation for the computational-statistical gap when 𝑛 ∈ [𝑛info, 𝑛alg]?

Towards this goal, for the regression model 𝑌 = 𝑋𝛽* +𝑊 , we consider the corresponding

maximum likelihood estimation problem:

(Φ2) min 𝑛− 1
2‖𝑌 −𝑋𝛽‖2

s.t. 𝛽 ∈ {0, 1}𝑝

‖𝛽‖0 = 𝑘,

where ‖𝛽‖0 is the sparsity of 𝛽. Namely, it is the cardinality of the set {𝑖 ∈ [𝑝]
⃒⃒
𝛽𝑖 ̸= 0}. We

denote by 𝜑2 its optimal value and by 𝛽2 the unique optimal solution. As above, the matrix

𝑋 is assumed to have i.i.d. standard normal entries, the elements of the noise vector 𝑊 are

assumed to have i.i.d. zero mean normal entries with variance 𝜎2, and the vector 𝛽* is assumed

to be binary 𝑘-sparse; ‖𝛽*‖0 = 𝑘. In particular, we assume that the sparsity 𝑘 is known to the
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optimizer. The normality of the entries of 𝑋 is not an essential assumption for our results, since

the Central Limit Theorem based estimates can be easily used instead. We adopt however the

normality assumption for simplicity. The normality of the entries of 𝑊 is more crucial, since our

large deviation estimates arising in the application of the conditional second moment depend on

this assumption. It is entirely possible though that similar results are derivable by applying the

large deviations estimates for the underlying distribution of entries of 𝑌 in the general case.

We address two questions in this Chapter: (1) What is the value of the squared error esti-

mator min𝛽∈{0,1}𝑝,‖𝛽‖0=𝑘 ‖𝑌 −𝑋𝛽‖2 = ‖𝑌 −𝑋𝛽2‖2; and (2) how well does the optimal vector 𝛽2

approximate the ground truth vector 𝛽*? As an outcome we seek to shed light on the algorithmic

barriers in the regime 𝑛 ∈ [𝑛info, 𝑛alg].

Results

Towards the goals outlined above we obtain several structural results regarding the optimization

problem Φ2, its optimal value 𝜑2, and its optimal solution 𝛽2. We introduce a new method of

analysis based on a certain conditional second moment method. The method will be explained

below in high level terms. Using this method we obtain a tight up to a multiplicative constant

approximation of the squared error 𝜑2 w.h.p., as parameters 𝑝, 𝑛, 𝑘 diverge to infinity, and 𝑛 ≤
𝑐𝑘 log 𝑝 for a small constant 𝑐. Some additional assumptions on 𝑝, 𝑛 and 𝑘 are needed and will be

introduced in the statements of the results. The approximation enables us to reveal interesting

structural properties of the underlying optimization problem Φ2. In particular,

(a) We prove that 𝑛info = 2𝑘 log 𝑝/ log(2𝑘/𝜎2 + 1) which was shown in [WWR10] to be the

information theoretic lower bound for the exact recovery of 𝛽* is the phase transition

point with the following ”all-or-nothing” property. When 𝑛 exceeds 𝑛info asymptotically,

(2𝑘)−1‖𝛽2 − 𝛽*‖0 ≈ 0, and when 𝑛 is asymptotically below 𝑛info, (2𝑘)−1‖𝛽2 − 𝛽*‖0 ≈ 1.

Namely, when 𝑛 > 𝑛info the recovery of 𝛽* is achievable via solving Φ2, whereas below 𝑛info

the optimization problem Φ2 “misses” the ground truth vector 𝛽* almost entirely. Since, as

discussed above, when 𝑛 < 𝑛info, the recovery of 𝛽* is impossible information theoretically,

our result implies that 𝑛info is indeed the information theoretic threshold for this problem.

We recall that 𝑛info exceeds asymptotically the asymptotic one-bit (𝑘 = 1) information

theoretic threshold 𝑛inf,1 = 𝜎2 log 𝑝, and is asymptotically below the LASSO/Compressive
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Sensing threshold 𝑛alg = (2𝑘 + 𝜎2) log 𝑝. We note also that our result improves upon the

result of Wainwright [Wai09a], who shows that the recovery of 𝛽* is possible by the brute

force search method, though only when 𝑛 is of the order 𝑂(𝑘 log 𝑝).

Notice that this result does not compare immediately with the information-theoretic phase

transition results of Chapter 2. The reason is that in Chapter 2 it is assumed that the vector

𝛽* is chosen from a uniform prior over the binary 𝑘-sparse vectors, while this result holds

for any fixed binary 𝑘-sparse vector 𝛽*. Nevertheless, it establishes the same all-or-nothing

behavior, but this time only for the performance of the MLE of the problem.

(b) We consider an intermediate optimization problem min𝛽 𝑛
− 1

2‖𝑌 − 𝑋𝛽‖2 when the mini-

mization is restricted to vectors 𝛽 with ‖𝛽 − 𝛽*‖0 = 2𝑘𝜁, for some fixed ratio 𝜁 ∈ [0, 1].

This is done towards deeper understanding of the problem Φ2. We show that the function

Γ(𝜁) ,
(︀
2𝜁𝑘 + 𝜎2

)︀ 1
2 exp

(︂
−𝜁𝑘 log 𝑝

𝑛

)︂
,

is, up to a multiplicative constant, a lower bound on this restricted optimization problem,

and in the special case of 𝜁 = 0 and 𝜁 = 1, it is also an upper bound, up to a multiplicative

constant. Since Γ is a log-concave function in 𝜁, returning to part (a) above, this implies

that that the squared error of the original optimization problem Φ2 is w.h.p. Γ(0) = 𝜎

when 𝑛 > 𝑛info, and is w.h.p. Γ(1) = (2𝑘 + 𝜎2)
1
2 exp

(︀
−𝑘 log 𝑝

𝑛

)︀
when 𝑛 < 𝑛info, both up to

multiplicative constants. We further establish that the function Γ exhibits phase transition

property at all three important thresholds 𝑛inf,1, 𝑛info and 𝑛alg, described pictorially on

Figures 6-2 in the next section. In particular, we prove that when 𝑛 > 𝑛alg, Γ(𝜁) is a

strictly increasing function with minimum at 𝜁 = 0, and when 𝑛 < 𝑛inf,1, it is a strictly

decreasing function with minimum at 𝜁 = 1. When 𝑛info < 𝑛 < 𝑛alg, Γ(𝜁) is non-monotonic

and achieves the minimum value at 𝜁 = 0, and when 𝑛inf,1 < 𝑛 < 𝑛info, Γ(𝜁) is again

non-monotonic and achieves the minimum value at 𝜁 = 1. In the critical case 𝑛 = 𝑛info,

both 𝜁 = 0 and 𝜁 = 1 are minimum values of 𝛾.

The results above suggest the following, albeit completely intuitive and heuristic picture,

which is based on assuming that the function Γ provides an accurate approximation of

the value of 𝜑2. When 𝑛 > 𝑛alg, a closer overlap with the ground truth vector 𝛽* allows
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for lower squared error value (Γ is increasing in 𝜁). In this case the convex relaxation

based methods such as LASSO and Compressive Sensing succeed in identifying 𝛽*. We

conjecture that in this case even more straightforward, greedy type algorithms based on

one step improvements might be able to recover 𝛽*. At this stage, this remains a conjecture.

When 𝑛 is below 𝑛alg but above 𝑛info, the optimal solution 𝛽2 of Φ2 still approximately

coincides with 𝛽*, but in this case there is a proliferation of solutions which, while they

achieve a sufficiently low squared error value, at the same time have very little overlap

with 𝛽*. Considering a cost value below the largest value of the function Γ, we obtain two

groups of solutions: those with a “substantial” overlap with 𝛽* and those with a “small”

even zero overlap with 𝛽*. This motivates looking at the so-called Overlap Gap Property

discussed in (c) below.

When 𝑛 is below 𝑛info, there are solutions, and in particular the optimal solution 𝛽2, which

achieve better squared error value than even the ground truth 𝛽*. This is exhibited by the

fact that the minimum value of Γ is achieved at 𝜁 = 1. We are dealing here with the case

of overfitting. While, information theoretically it is impossible to precisely recover 𝛽* in

this regime, it is not clear whether in this case there exists any algorithm which can recover

at least a portion of the support of 𝛽*, algorithmic complexity aside. We leave it as an

interesting open question.

When 𝑛 is below the (𝑘 = 1, large 𝜎) information theoretic lower bound 𝑛inf,1, the overfitting

situation is even more profound. Moving further away from 𝛽* allows for better and better

squared error values (Γ is decreasing in 𝜁).

(c) Motivated by the results in the theory of spin glasses and the later results in the context

of randomly generated constraint satisfaction problems, and in light of the evidence of the

Overlap Gap Property (OGP) discussed above, we consider the solution space geometry of

the problem Φ2 as well as the restricted problem corresponding to the constraint ‖𝛽−𝛽*‖0 =
2𝜁𝑘. For many examples of randomly generated constraint satisfaction problems such as

random K-SAT, proper coloring of a sparse random graph, the problem of finding a largest

independent subset of a sparse random graph, and many others, it has been conjectured and

later established rigorously that solutions achieving near optimality, or solution satisfying a
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set of randomly generated constraints, break down into clusters separated by cost barriers

of a substantial size in some appropriate sense, [ACORT11, ACO08, MRT11, COE11, GSa,

RV14, GSb]. As a result, these models indeed exhibit the OGP. For example, independent

sets achieving near optimality in sparse random graph exhibit the OGP in the following

sense. The intersection of every two such independent sets is either at most some value

𝜏1 or at least some value 𝜏2 > 𝜏1. This and similar properties were used in [GSa],[RV14]

and [GSb] to establish a fundamental barriers on the power of so-called local algorithms

for finding nearly largest independent sets. The OGP was later established in a setting

other than constraint satisfaction problems on graphs, specifically in the context of finding

a densest submatrix of a matrix with i.i.d. Gaussian entries [GL16].

The non-monotonicity of the function Γ for 𝑛 < 𝑛alg already suggests the presence of

the OGP. Note that for any value 𝑟 strictly below the maximum value max𝜁∈(0,1) Γ(𝜁) we

obtain the existence of two values 𝜁1 < 𝜁2, such that for every 𝜁 with Γ(𝜁) ≤ 𝑟, either

𝜁 ≤ 𝜁1 or 𝜁 ≥ 𝜁2. Namely, this property suggests that every binary vector achieving a cost

at most 𝑟 either has the overlap at most 𝜁1𝑘 with 𝛽*, or the overlap at least 𝜁2𝑘 with 𝛽*.

Unfortunately, this is no more than a guess, since Γ(𝜁) provides only a lower bound on the

optimization cost. Nevertheless, we establish that the OGP provably takes place w.h.p.

when 𝐶𝜎2 log 𝑝 ≤ 𝑛 ≤ 𝑐𝑘 log 𝑝, for appropriately large constant 𝐶 and appropriately small

constant 𝑐. Our result takes advantage of the tight up to a multiplicative error estimates

of the squared errors associated with the restricted optimization problem Φ2 with the

restricted ‖𝛽 − 𝛽*‖ = 2𝑘𝜁, discussed earlier. It remains an intriguing open question to

verify whether the optimization problem Φ2 is indeed algorithmically intractable in this

regime.

(d) Finally, as an outcome of our geometric results for the lanscape of (Φ2), we obtain neg-

ative results on the performance of the well-known ℓ1-constrained quadratic optimization

recovery scheme call LASSO when 𝑛 < 𝑐𝑛alg. LASSO is defined as follows: let

LASSO𝜆 : min
𝛽∈R𝑝

𝑛−1‖𝑌 −𝑋𝛽‖22 + 𝜆‖𝛽‖1 (3.1)

for appropriately chosen tuning parameter 𝜆 > 0. When 𝑛 > 𝐶𝑛alg, the optimal solution of
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LASSO, and of it’s closer relative linear program called Dantzig selector, has been shown to

be approximating 𝛽* up to the noise level [CT07, BRT09b, OTH13]. More specifically, an

easy corollary of the seminar work by Bickel, Ritov and Tsybakov [BRT09b] applied to 𝑋

with Gaussian iid entries implies that as long as 𝑛 ≥ 𝐶𝑛alg = 𝐶𝑘 log 𝑝 for some sufficiently

large constant 𝐶 > 0 if 𝜆 = 𝐴𝜎
√︀

log 𝑝/𝑛 the optimal solution 𝛽LASSO,𝜆 of LASSO𝜆 satisfies

for some constant 𝑐 > 0,

‖𝛽 − 𝛽*‖2 ≤ 𝑐𝜎 (3.2)

w.h.p. Condition (3.2) is known in the literature as ℓ2-stable recovery of the vector 𝛽*,

w.h.p. Tighter results for the performance on LASSO and the constants 𝑐, 𝐶 are established

in the literature (see [OTH13] and references therein), yet they do not apply in the regime

where the sparsity is sublinear to the feature size 𝑝, which as it is explained above, is the

main focus of this work. Note that ℓ2-stable recovery condition (3.2) is not comparable to

support recovery, which was discuss previously on this chapter. Yet, interestingly, notice

that even if the focus here is on ℓ2-stable recovery, the best known computational limit

for our setting where 𝛽* is binary and 𝑘-sparse remains of order 𝑛alg but the information-

theoretic limit can be still established to be of order 𝑛info [Rad11]. The extent to which

LASSO can ℓ2-stably recover the vector which fewer number of samples, remained before

the present work, to the best of our knowledge, an open problem.

We establish that if 𝑛* ≤ 𝑛 < 𝑐𝑛alg for small enough 𝑐 > 0 and 𝛽* exactly 𝑘-sparse and

binary, then for any

𝜆 ≥ 𝜎

√︂
1

𝑘
exp

(︂
−𝑘 log 𝑝

5𝑛

)︂

the optimal solution of LASSO𝜆 fails to ℓ2-stable recover 𝛽* w.h.p More specifically, we

show that under the assumptions described above the optimal solution of LASSO𝜆, call it

𝛽LASSO,𝜆, satisfies

‖𝛽LASSO,𝜆 − 𝛽*‖2 ≥ 𝜎 exp

(︂
𝑘 log 𝑝

5𝑛

)︂
(3.3)

w.h.p. Note that if 𝑛 = 𝑐𝑘 log 𝑝 the right hand side of (3.3) becomes exp
(︀
1
𝑐

)︀
𝜎 and in

particular as 𝑘 log 𝑝/𝑛 = 𝑐→ 0, according to (3.3), the ratio ‖𝛽LASSO − 𝛽*‖2/𝜎 explodes to
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infinity, indicating the failure of LASSO to ℓ2-stably recover 𝛽* in this regime.

Albeit our result does not apply for any arbitrarily small value of 𝜆 > 0 our result covers

certain arguably important choices of 𝜆 in the literature of LASSO. Perhaps most impor-

tantly, our results covers the theoretically successful choice of the tuning parameter 𝜆 for

LASSO𝜆 when 𝑛 ≥ 𝐶𝑛alg in [BRT09b] which, as explained above, shows that LASSO𝜆 with

𝜆 = 𝜆* := 𝐴𝜎
√︀
log 𝑝/𝑛

for constant 𝐴 > 2
√
2, ℓ2-stably recovers 𝛽*. Indeed, since in our case, we need 𝑐 small

enough, we have 𝑛 < 𝑘 log 𝑝 and therefore

𝜆 = 𝜆* ≥ 𝐴𝜎

√︂
1

𝑘
> 𝜎

√︂
1

𝑘

which finally implies

𝜆 = 𝜆* ≥ 𝜎

√︂
1

𝑘
exp

(︂
−𝑘 log 𝑝

5𝑛

)︂
.

An important feature of our result is that it is quantitative, as (3.3) gives a lower bound

of how far the optimal solution of LASSO𝜆 is from 𝛽* in the ℓ2 norm. Interestingly,

our lower bound depends exponentially on the ratio 𝑘 log 𝑝/𝑛, implying a exponential

rate of divergence from ℓ2-stable recovery. Moreover, given the existing positive result

of [BRT09b] for LASSO, our result confirms that 𝑛alg = 𝑘 log 𝑝 is the exact order of neces-

sary number of samples for LASSO𝜆 to ℓ2-stably recover the ground truth vector 𝛽*, when

𝜆 ≥ 𝜎
√︀

1/𝑘 exp (−𝑘 log 𝑝/5𝑛). Our result is therefore closed in spirit with the literature

on LASSO in the context of support recovery where, as we discussed in the Introduction,

a similar phase transition results is established around 𝑛alg by Wainwright in [Wai09b].

In the specific case 𝛽* is binary a natural modification of LASSO it is to add the box

constraint 𝛽 ∈ [0, 1]𝑝 to the LASSO formulation. Such box constraints have been proven to

improve the performance of LASSO in many cases, such as in signal processing applications

[BTK+17]. We show that in our case, our negative result for LASSO remains valid even
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with the box constraint. Specifically, let us focus for any 𝜆 > 0 on

LASSO(box)𝜆 : min
𝛽∈[0,1]𝑝

𝑛−1‖𝑌 −𝑋𝛽‖22 + 𝜆‖𝛽‖1. (3.4)

We show that if 𝑛* ≤ 𝑛 < 𝑐𝑛alg for small enough 𝑐 > 0 and 𝛽* is an exactly 𝑘-sparse

binary vector, for any 𝜆 ≥ 𝜎
√︁

1
𝑘
exp

(︀
−𝑘 log 𝑝

5𝑛

)︀
the optimal solution of LASSO(box)𝜆 , call

it 𝛽LASSO(box),𝜆, satisfies

‖𝛽LASSO(box),𝜆 − 𝛽*‖2 ≥ 𝜎 exp

(︂
𝑘 log 𝑝

5𝑛

)︂
(3.5)

w.h.p., and therefore also fails to ℓ2-stably recover 𝛽* w.h.p.

3.1.1 Methods

In order to obtain estimates of the squared error for the problem Φ2 we use a first and second

moment method, which we now describe in high level terms. We begin with the following model

which we call Pure Noise model, in which it is assumed that 𝛽* = 0 and thus 𝑌 is simply a vector

of i.i.d. zero mean Gaussian random variables with variance 𝜎2. In this model the interest is on

estimating the quantity min𝛽 ‖𝑌 −𝑋𝛽‖2 where 𝛽 binary and 𝑘-sparse.

For every value 𝑡 > 0 we consider the counting random variable 𝑍𝑡 equal to the number of

𝑘-sparse binary 𝛽 such that ‖𝑌 − 𝑋𝛽‖∞ ≤ 𝑡, where ‖𝑥‖∞ = max𝑖 |𝑥𝑖| is the infinity norm. It

turns out that while ‖ ·‖∞ norm estimates for the difference 𝑌 −𝑋𝛽 are easier to deal with, they

provide sufficiently accurate information for the ‖ · ‖2 norm of 𝑌 −𝑋𝛽 we originally care about;

hence our focus on the former. We compute the expected value of 𝑍𝑡 and find a critical value 𝑡*

such that for 𝑡 < 𝑡* this expectation converges to zero. Combining with Markov inequality we

have P (𝑍𝑡 ≥ 1) ≤ E [𝑍𝑡] → 0 for all 𝑡 < 𝑡* or 𝑍𝑡 = 0 w.h.p. for all 𝑡 < 𝑡*. In particular, 𝑡* serves

as a lower bound on min𝛽 ‖𝑌 −𝑋𝛽‖∞ where 𝛽 binary and 𝑘-sparse. This technique of finding

the lower bound 𝑡* is known as the first moment method.

We then consider the second moment method for 𝑍𝑡. In the naive form the second moment

method would succeed if for 𝑡 > 𝑡*, E[𝑍2
𝑡 ] was close to (E[𝑍𝑡])

2, as in this case the Paley-Zigmund

inequality would give P(𝑍𝑡 ≥ 1) ≥ E[𝑍𝑡]
2 /E[𝑍2

𝑡 ] → 1 and therefore 𝑡* is also an upper bound for

min𝛽 ‖𝑌 −𝑋𝛽‖∞. Unfortunately, the naive second moment estimation fails as it can be easily
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checked that for 𝑡 close to 𝑡*, E[𝑍𝑡]
2 /E[𝑍2

𝑡 ] → 0.

We consider an appropriate conditioning to make the second moment method work. We

notice that the fluctuations of 𝑌 alone are enough to create a substantial gap between the two

moments of 𝑍𝑡. For this reason, we consider the conditional first and second moment of 𝑍𝑡,

where the conditioning is done on 𝑌 . The conditional second moment involves computing large

deviations estimates on a sequence of coupled bi-variate normal random variables. A fairly

detailed analysis of this large deviation estimate is obtained to arrive at the estimation of the

ratio E[𝑍𝑡|𝑌 ]2 /E[𝑍2
𝑡 |𝑌 ]. We then employ the conditional version of the Paley-Zigmund inequality

P(𝑍𝑡 ≥ 1|𝑌 ) ≥ E[𝑍𝑡|𝑌 ]2 /E[𝑍2
𝑡 |𝑌 ] to obtain the lower bound P(𝑍𝑡 ≥ 1) ≥ E

[︀
E[𝑍𝑡|𝑌 ]2 /E[𝑍2

𝑡 |𝑌 ]
]︀

where expectation is taken over 𝑌 . Using the estimation on the lower bound we show that 𝑡*,

the first moment estimate, serves also as an upper bound for min𝛽 ‖𝑌 − 𝑋𝛽‖∞, up to certain

multiplicative constant factors.

To explain the success of the conditional technique notice that by tower property and Cauchy-

Schwarz inequality

E

[︃
E[𝑍𝑡|𝑌 ]2

E[𝑍2
𝑡 |𝑌 ]

]︃
E
[︀
𝑍2

𝑡

]︀
= E

[︃
E[𝑍𝑡|𝑌 ]2

E[𝑍2
𝑡 |𝑌 ]

]︃
E
[︀
E
[︀
𝑍2

𝑡 |𝑌
]︀]︀

≥ E[E[𝑍𝑡|𝑌 ]]2 = E[𝑍𝑡]
2

which equivalently gives

E

[︃
E[𝑍𝑡|𝑌 ]2

E[𝑍2
𝑡 |𝑌 ]

]︃
≥ E[𝑍𝑡]

2

E[𝑍2
𝑡 ]

certifying that the lower bound on P(𝑍𝑡 ≥ 1) obtained through conditioning dominates the one

from the direct application of Paley-Zigmund inequality.

Next we use the estimates from the Pure Noise model, for the original model involving the

binary 𝛽* with ‖𝛽*‖0 = 𝑘. We consider the 2𝑘 = 2|Support(𝛽
*)| restricted versions of the original

problem of interest (Φ2) in which the optimization is conducted over the space of binary 𝑘-sparse

vectors 𝛽 where the support of 𝛽 is constrained to intersect the support of 𝛽* in a specific way.

In this form the problem can be reduced to the Pure Noise problem in a relative straightforward

way (see Section 3.4 for the exact reduction). This reduction alongside with the first and second

moment estimates for the Pure Noise model described above allows us to approximate the optimal

value of the restricted problems, and in particular of (Φ2) as well.

Note that conditional first and second moment methods have been used extensively in the
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literature (e.g. see [MNS15, BMV+18, BMNN16, PWB16, ?, BBSV18] for recent examples)

but it is a common understanding that the appropriate choice of conditioning does not follow a

universal reasoning. To the best of our knowledge this is the first time the conditional second

moment method is used in the form described above and this might be of independent interest.

Organization The remainder of the Chapter is organized as follows. The description of the

model, assumptions and the main results are found in the next section. Section 3.3 is devoted

to the analysis of the Pure Noise model which is also defined in this section. Sections 3.4, 3.5

and 3.6 are devoted to proofs of our main results. We conclude in the last section with some

open questions and directions for future research.

3.2 Model and the Main Results

We remind our model for convenience. Let 𝑋 ∈ R𝑛×𝑝 be an 𝑛 × 𝑝 matrix with i.i.d. standard

normal entries, and 𝑊 ∈ R𝑝 be a vector with i.i.d. 𝑁 (0, 𝜎2) entries. We also assume that 𝛽* is

a 𝑝× 1 binary vector with exactly 𝑘 entries equal to unity (𝛽* is binary and 𝑘-sparse). For every

binary vector 𝛽 ∈ {0, 1}𝑝 we let Support(𝛽) := {𝑖 : 𝛽𝑖 = 0}. Namely, 𝛽𝑖 = 1 if 𝑖 ∈ Support(𝛽)

and 𝛽𝑖 = 0 otherwise. We observe 𝑛 noisy measurements 𝑌 ∈ R𝑛 of the vector 𝛽* ∈ R𝑝 given by

𝑌 = 𝑋𝛽* +𝑊 ∈ R𝑛.

Throughout the Chapter we are interested in the high dimensional regime where 𝑝 exceeds 𝑛

and both diverge to infinity. Various assumptions on 𝑘, 𝑛, 𝑝 are required for technical reasons

and some of the assumptions vary from theorem to theorem. But almost everywhere we will

be assuming that 𝑛 is at least of the order 𝑘 log 𝑘 and at most of the order 𝑘 log 𝑝. The results

usually hold in the “with high probability" (w.h.p.) sense as 𝑘, 𝑛 and 𝑝 diverge to infinity, but

for concreteness we usually explicitly say that 𝑘 diverges to infinity. This automatically implies

the same for 𝑝, since 𝑝 ≥ 𝑘, and for 𝑛 since it is assumed to be at least of the order 𝑂(𝑘 log 𝑘).
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In order to recover 𝛽*, we consider the following constrained optimization problem

(Φ2) min 𝑛− 1
2 ||𝑌 −𝑋𝛽||2

s.t. 𝛽 ∈ {0, 1}𝑝

||𝛽||0 = 𝑘.

We denote by 𝜑2 = 𝜑2 (𝑋,𝑊 ) its optimal value and by 𝛽2 its (unique) optimal solution. Note

that the solution is indeed unique due to discreteness of 𝛽 and continuity of the distribution of

𝑋 and 𝑌 . Namely, the optimization problem Φ2 chooses the 𝑘-sparse binary vector 𝛽 such that

𝑋𝛽 is as close to 𝑌 as possible, with respect to the L2 norm. Also note that since our noise

vector, 𝑊 , consists of i.i.d. Gaussian entries, 𝛽2 is also the Maximum Likelihood Estimator of

𝛽*.

Consider now the following restricted version of the problem Φ2:

(Φ2 (ℓ)) min 𝑛− 1
2 ||𝑌 −𝑋𝛽||2

s.t. 𝛽 ∈ {0, 1}𝑝

||𝛽||0 = 𝑘, ||𝛽 − 𝛽*||0 = 2𝑙,

where ℓ = 0, 1, 2, .., 𝑘. For every fixed ℓ, denote by 𝜑2 (ℓ) the optimal value of Φ2 (ℓ). Φ2 (ℓ) is the

problem of finding the 𝑘-sparse binary vector 𝛽, such that 𝑋𝛽 is as close to 𝑌 as possible with

respect to the ℓ2 norm, but also subject to the restriction that the cardinality of the intersection

of the supports of 𝛽 and 𝛽* is exactly 𝑘 − ℓ. Then 𝜑2 = minℓ 𝜑2 (ℓ).

Consider the extreme cases ℓ = 0 and ℓ = 𝑘, we see that for ℓ = 0, the region that defines

Φ2 (0) consists only of the vector 𝛽*. On the other hand, for ℓ = 𝑘, the region that defines Φ2 (𝑘)

consists of all 𝑘-sparse binary vectors 𝛽, whose common support with 𝛽* is empty.

We are now ready to state our first main result.

Theorem 3.2.1. Suppose 𝑘 log 𝑘 ≤ 𝐶𝑛 for some constant 𝐶 for all 𝑘, 𝑛. Then

(a) W.h.p. as 𝑘 increases

𝜑2 (ℓ) ≥ 𝑒−
3
2

√
2ℓ+ 𝜎2 exp

(︂
−ℓ log 𝑝

𝑛

)︂
, (3.6)
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for all 0 ≤ ℓ ≤ 𝑘.

(b) Suppose further that 𝜎2 ≤ 2𝑘. Then for every sufficiently large constant 𝐷0 if 𝑛 ≤
𝑘 log 𝑝/(3 log𝐷0), then w.h.p. as 𝑘 increases, the cardinality of the set

{︁
𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, ‖𝛽 − 𝛽*‖0 = 2𝑘, 𝑛− 1

2‖𝑌 −𝑋𝛽‖2 ≤ 𝐷0

√
2𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂}︁

(3.7)

is at least 𝐷
𝑛
3
0 . In particular, this set is exponentially large in 𝑛.

The proof of this theorem is found in Section 3.4 and relies on the analysis for the Pure Noise

model developed in the next section. The part (a) of the theorem above gives a lower bound on

the optimal value of the optimization problem Φ2 (ℓ) for all ℓ = 0, 1, . . . , 𝑘 w.h.p. For this part, as

stated, we only need that 𝑘 log 𝑘 ≤ 𝐶𝑛 and 𝑘 diverging to infinity. When ℓ = 0 the value of 𝜑(ℓ)

is just 𝑛− 1
2

√︁∑︀
1≤𝑖≤𝑛𝑊

2
𝑖 which converges to 𝜎 by the Law of Large Numbers. Note that 𝜎 is also

the value of
√
2𝑙 + 𝜎2 exp

(︀
− ℓ log 𝑝

𝑛

)︀
when ℓ = 0. Thus the lower bound value in part (a) is tight

up to a multiplicative constant when ℓ = 0. Importantly, as the part (b) of the theorem shows,

the lower bound value is also tight up to a multiplicative constant when ℓ = 𝑘, as in this case not

only vectors 𝛽 achieving this bound exist, but the number of such vectors is exponentially large

in 𝑛 w.h.p. as 𝑘 increases. This result will be instrumental for our “all-or-nothing” Theorem 3.2.3

below.

Now we will discuss some implications of Theorem 3.2.1. The expression (2ℓ+ 𝜎2)
1
2 exp

(︀
− ℓ log 𝑝

𝑛

)︀
,

appearing in the theorem above, motivates the following notation. Let the function Γ : [0, 1] →
R+ be defined by

Γ (𝜁) =
(︀
2𝜁𝑘 + 𝜎2

)︀ 1
2 exp

(︂
−𝜁𝑘 log 𝑝

𝑛

)︂
. (3.8)

Then the lower bound (3.6) can be rewritten as

𝜑2 (ℓ) ≥ 𝑒−
3
2Γ(ℓ/𝑘).

A similar inequality applies to (3.7).
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Let us make some immediate observations regarding the function Γ. It is a strictly log-concave

function in 𝜁 ∈ [0, 1]:

log Γ (𝜁) =
1

2
log
(︀
2𝜁𝑘 + 𝜎2

)︀
− 𝜁

𝑘 log 𝑝

𝑛
.

and hence

min
0≤𝜁≤1

Γ (𝜁) = min (Γ (0) ,Γ (1)) = min

(︂
𝜎,
√
2𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂)︂
.

Now combining this observation with the results of Theorem 3.2.1 we obtain as a corollary a

tight up to a multiplicative constant approximation of the value 𝜑2 of the optimization problem

Φ2.

Theorem 3.2.2. Under the assumptions of parts (a) and (b) of Theorem3.2.1, for every 𝜖 > 0

and for every sufficiently large constant 𝐷0 if 𝑛 ≤ 𝑘 log 𝑝/(3 log𝐷0), then w.h.p. as 𝑘 increases,

𝑒−
3
2 min

(︂
𝜎,
√
2𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂)︂
≤ 𝜑2 ≤ min

(︂
(1 + 𝜖)𝜎,𝐷0

√
2𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂)︂
.

Proof. By Theorem 3.2.1 we have that 𝜑2 is at least

𝑒−
3
2 min

𝜁
Γ(𝜁) = 𝑒−

3
2 min (Γ(0),Γ(1)) .

This establishes the lower bound. For the upper bound we have 𝜑2 ≤ min(𝜑2(0), 𝜑2(𝑘)). By the

Law of Large Numbers, 𝜑2(0) is at most (1 + 𝜖)𝜎 w.h.p. as 𝑘 (and therefore 𝑛) increases. The

second part of Theorem3.2.1 gives provides the necessary bound on 𝜑2(𝑘).

As in the introduction, letting 𝑛info = 2𝑘 log 𝑝

log( 2𝑘
𝜎2+1)

, we conclude that min𝜁 Γ (𝜁) = Γ (1) when

𝑛 < 𝑛info and = Γ (0) when 𝑛 > 𝑛info, with the critical case 𝑛 = 𝑛info (ignoring the integrality

of 𝑛info), giving Γ (0) = Γ (1). This observation suggests the following “all-or-nothing” type

behavior of the problem Φ2, if Γ was an accurate estimate of the value of the optimization problem

Φ2. When 𝑛 > 𝑛info the solution 𝛽2 of the minimization problem Φ2 is expected to coincide with

the ground truth 𝛽* since in this case 𝜁 = 0, which corresponds to ℓ = 0, minimizes Γ (𝜁). On the

other hand, when 𝑛 < 𝑛info, the solution 𝛽2 of the minimization problem Φ2 is not even expected
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to have any common support with the ground truth 𝛽*, as in this case 𝜁 = 1, which corresponds

to ℓ = 𝑘, minimizes Γ (𝜁). Of course, this is nothing more than just a suggestion, since by

Theorem 3.2.1, Γ (𝜁) only provides a lower and upper bounds on the optimization problem Φ2,

which tight only up to a multiplicative constant. Nevertheless, we can turn this observation into

a theorem, which is our second main result.

Theorem 3.2.3. Let 𝜖 > 0 be arbitrary. Suppose max{𝑘, 2𝑘
𝜎2 + 1} ≤ exp

(︀√
𝐶 log 𝑝

)︀
, for some

𝐶 > 0 for all 𝑘 and 𝑛. Suppose furthermore that 𝑘 → ∞ and 𝜎2/𝑘 → 0 as 𝑘 → ∞. If

𝑛 ≥ (1 + 𝜖)𝑛info, then w.h.p. as 𝑘 increases

1

2𝑘
‖𝛽2 − 𝛽*‖0 → 0.

On the other hand if 1
𝐶
𝑘 log 𝑘 ≤ 𝑛 ≤ (1− 𝜖)𝑛info, then w.h.p. as 𝑘 increases

1

2𝑘
‖𝛽2 − 𝛽*‖0 → 1.

The proof of Theorem 3.2.3 is found in Section 3.5. The theorem above confirms the “all-

or-nothing” type behavior of the optimization problem Φ2, depending on how 𝑛 compares with

𝑛info. Recall that, according to [WWR10], 𝑛info is an information theoretic lower bound for

recovering 𝛽* from 𝑋 and 𝑌 precisely, and also for 𝑛 < 𝑛info it does not rule out the possibility

of recovering at least a fraction of bits of 𝛽*. Our theorem however shows firstly that 𝑛info is

exactly the infortmation theoretic threshold for exact recovery and also that if 𝑛 < 𝑛info the

optimization problem Φ2 fails to recover asymptotically any of the bits of 𝛽*. We note also

that the value of 𝑛info is naturally larger than the corresponding threshold when 𝑘 = 1, namely

2 log 𝑝/ log(1 + 2𝜎−2), which is asymptotically 𝜎2 log 𝑝 = 𝑛inf,1. Interestingly, however this value

for 𝑛, which has appeared also, as explained in the Introduction as a weaker information theoretic

bound, also marks a phase transition point as we discuss in the proposition below.

As our result above shows, the recovery of 𝛽* is possible by solving Φ2 (say by running the inte-

ger programming problem) when 𝑛 > 𝑛info, even though efficient algorithms such as compressive

sensing and LASSO algorithms are only known to work when 𝑛 ≥ (2𝑘 + 𝜎2) log 𝑝. This suggests

that the region 𝑛 ∈ [𝑛info, (2𝑘 + 𝜎2) log 𝑝] might correspond to solvable but algorithmically hard

regime for the problem of finding 𝛽*.
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We turn to the study of the “limiting curve" Γ (𝜁). Note that we refer to the curve Γ = Γ(𝜁) as

the limiting curve because (1) from Theorem 3.2.1 for 𝜁 := ℓ/𝑘 it provides a deterministic lower

bound for the value of 𝜑2(ℓ) (up to a multiplicative constant) but also an upper bound when

ℓ = 0 and ℓ = 𝑘 (up to a multiplicative constant) and (2) from the example of Theorem 3.2.3 it

appears that structural properties of the curve Γ, such as the behavior of its maximum argument,

accurately suggest a similar behavior for the actual values of 𝜑2(ℓ),

Studying the properties of the "limiting curve" Γ (𝜁) we discover an intriguing link between its

behavior and the three fundamental thresholds discussed above. Namely, the threshold 𝑛inf,1 =

𝜎2 log 𝑝, the threshold 𝑛info =
2𝑘

log( 2𝑘
𝜎2+1)

log 𝑝, and finally the threshold 𝑛alg = (2𝑘 + 𝜎2) log 𝑝. For

the illustration of different cases outlined in the proposition above see Figure 6-2.

Proposition 3.2.4. The function Γ satisfies the following properties.

1. When 𝑛 ≤ 𝜎2 log 𝑝, Γ is a strictly decreasing function of 𝜁. (Figure 3-1(a)),

2. When 𝜎2 log 𝑝 < 𝑛 < 𝑛info, Γ is not monotonic and it attains its minimum at 𝜁 = 1. (Figure

3-1(b)),

3. When 𝑛 = 𝑛info, Γ is not monotonic and it attains its minimum at 𝜁 = 0 and 𝜁 = 1.

(Figure 3-2(a))

4. When 𝑛info < 𝑛 < (2𝑘+ 𝜎2) log 𝑝, Γ is not monotonic and it attains its minimum at 𝜁 = 0.

(Figure 3-2(b))

5. When 𝑛 > (2𝑘 + 𝜎2) log 𝑝, Γ is a strictly increasing function of 𝜁. (Figure 3-3)

In particular, we see that both the bound 𝑛inf,1 = 𝜎2 log 𝑝, and 𝑛alg = (2𝑘 + 𝜎2) log 𝑝 mark

the phase transition change of (lack of) monotonicity property of the limiting curve Γ. We also

summarize our findings in Table 3.1. The proof of this proposition is found in Section 3.5.

To study the apparent algorithmic hardness of the problem in the regime 𝑛 ∈ [𝑛inf,1, 𝑛alg],

as well as to see whether the picture suggested by the curve Γ is actually accurate, we now

study the geometry of the solution space of the problem Φ2. We establish in particular, that the

solutions 𝛽 which are sufficiently “close” to optimality in Φ2, that is the 𝛽’s which have objective

value ‖𝑌 −𝑋𝛽‖2 close to the optimal value 𝜑2, break into two separate clusters; namely those
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𝑛 < 𝑛inf,1 Γ is monotonically decreasing
𝑛inf,1 < 𝑛 < 𝑛info Γ is not monotonic

and attains its minimum at 𝜁 = 1
𝑛info < 𝑛 < 𝑛alg Γ is not monotonic

and attains its minimum at 𝜁 = 0
𝑛alg < 𝑛 Γ is monotonically increasing

Table 3.1: The phase transition property of the limiting curve Γ (𝜁)

which have a “large” overlap with 𝛽*, and those which are far from it, namely those which have

a “small” overlap with 𝛽*. As discussed in Introduction, such an Overlap Gap Property (OGP)

appears to mark the onset of algorithmic hardness for many randomly generated constraint

satisfaction problems. Here we demonstrate its presence in the context of high dimensional

regression problems.

The presence of the OGP is indeed suggested by the lack of monotonicity of the limiting

curve Γ when 𝜎2 log 𝑝 < 𝑛 < (2𝑘 + 𝜎2) log 𝑝. Indeed, in this case fixing any value 𝛾 strictly

smaller than the maximum value of Γ, but larger than both Γ (0) and Γ (1), we see that set of

overlaps 𝜁 achieving value ≤ 𝛾 is disjoint union of two intervals of the form [0, 𝜁1] and [𝜁2, 1]

with 𝜁1 < 𝜁2. Of course, as before this is nothing but a suggestion, since the function Γ is only

a lower bound on the objective value Φ2(ℓ) for 𝜁 = ℓ/𝑘. In the next theorem we establish that

the OGP indeed takes place, in the case where 𝑛 is between the information-theoretic threshold

𝑛info and a constant multiple of 𝑛alg. The case where 𝑛 lies between 𝜎2 log 𝑝 and 𝑛info is discussed

subsequent to the statement of the Theorem. Given any 𝑟 ≥ 0, let

𝑆𝑟 := {𝛽 ∈ {0, 1}𝑝 : ||𝛽||0 = 𝑘, 𝑛− 1
2 ||𝑌 −𝑋𝛽||2 < 𝑟}.

Theorem 3.2.5 (The Overlap Gap Property). Suppose the assumptions of Theorem 3.2.1 hold

and for some 𝐶 > 0, 𝑘 log 𝑘 ≤ 𝐶𝑛. For every sufficiently large constant 𝐷0 there exist sequences

0 < 𝜁1,𝑘,𝑛 < 𝜁2,𝑘,𝑛 < 1 satisfying

lim
𝑘→∞

𝑘 (𝜁2,𝑘,𝑛 − 𝜁1,𝑘,𝑛) = +∞,

as 𝑘 → ∞, and such that if 𝑟𝑘 = 𝐷0max (Γ(0),Γ(1)) and 𝑛info ≤ 𝑛 ≤ 𝑘 log 𝑝/(3 log𝐷0) then

w.h.p. as 𝑘 increases the following holds
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(a) The behavior of Γ for 𝑛 = 10 < 𝜎2 log 𝑝.

(b) The behavior of Γ for 𝜎2 log 𝑝 < 𝑛 = 120 < 𝑛info.

Figure 3-1: The first two different phases of the function Γ as 𝑛 grows, where 𝑛 < 𝑛info. We
consider the case when 𝑝 = 109, 𝑘 = 10 and 𝜎2 = 1. In this case ⌈𝜎2 log 𝑝⌉ = 21, ⌈𝑛info⌉ = 137
and ⌈(2𝑘 + 𝜎2) log 𝑝⌉ = 435.

(a) For every 𝛽 ∈ 𝑆𝑟𝑘

(2𝑘)−1 ‖𝛽 − 𝛽*‖0 < 𝜁1,𝑘,𝑛 or (2𝑘)−1 ‖𝛽 − 𝛽*‖0 > 𝜁2,𝑘,𝑛.
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(a) The behavior of Γ for 𝑛 = 136 = 𝑛info.

(b) The behavior of Γ for 𝑛info < 𝑛 = 200 < (2𝑘 + 𝜎2) log 𝑝.

Figure 3-2: The middle two different phases of the function Γ as 𝑛 grows where 𝑛info ≤ 𝑛 < 𝑛alg.
We consider the case when 𝑝 = 109, 𝑘 = 10 and 𝜎2 = 1. In this case ⌈𝜎2 log 𝑝⌉ = 21, ⌈𝑛info⌉ = 137
and ⌈(2𝑘 + 𝜎2) log 𝑝⌉ = 435.

(b) 𝛽* ∈ 𝑆𝑟𝑘 . In particular the set

𝑆𝑟𝑘 ∩ {𝛽 : (2𝑘)−1 ‖𝛽 − 𝛽*‖0 < 𝜁1,𝑘,𝑛}
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(a) The behavior of Γ for (2𝑘 + 𝜎2) log 𝑝 < 𝑛 = 450.

Figure 3-3: The final phase of the function Γ as 𝑛 grows where 𝑛alg ≤ 𝑛. We consider the
case when 𝑝 = 109, 𝑘 = 10 and 𝜎2 = 1. In this case ⌈𝜎2 log 𝑝⌉ = 21, ⌈𝑛info⌉ = 137 and
⌈(2𝑘 + 𝜎2) log 𝑝⌉ = 435.

is non-empty.

(c) The cardinality of the set

|𝑆𝑟𝑘 ∩ {𝛽 : ‖𝛽 − 𝛽*‖0} = 2𝑘}|,

is at least 𝐷
𝑛
3
0 . In particular the set 𝑆𝑟𝑘 ∩ {𝛽 : ‖𝛽 − 𝛽*‖0} = 2𝑘} has exponentially many

in 𝑛 elements.

The proof of Theorem 3.2.5 is found in Section 3.6. The property 𝑘 (𝜁2,𝑘,𝑛 − 𝜁1,𝑘,𝑛) → ∞ in

the statement of the theorem implies in particular that the difference (𝜁2,𝑘,𝑛 − 𝜁1,𝑘,𝑛) grows faster

than 1/𝑘 as 𝑘 diverges, ensuring that for many overlap values ℓ, the ratio 2ℓ/𝑘 falls within the

interval [𝜁1,𝑘,𝑛, 𝜁2,𝑘,𝑛]. Namely, the overlap gap interval is non-vacuous for all large enough 𝑘.

Note that for 𝑘 such that max{𝑘, 2𝑘
𝜎2 + 1} ≤ exp

(︀√
𝐶 log 𝑝

)︀
for large 𝑘 it holds 1

𝐶
𝑘 log 𝑘 < 𝑛info

and in particular the result of Theorem 3.2.5 holds for all 𝑛 ∈ [𝑛info, 𝑘 log 𝑝/(3 log𝐷0)] w.h.p.

since the constraint 𝑘 log 𝑘 ≤ 𝐶𝑛 becomes redundant.

The study of Overlap Gap Property in the case where 𝜎2 log 𝑝 < 𝑛 < 𝑛info does not have a clear
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algorithmic value, since the problem becomes information-theoretic impossible. Nevertheleess,

the first moment curve is also non-monotonic in that regime suggesting that the Overlap Gap

Property still holds. Under the additional stringent assumption that 𝜎2 → +∞ as 𝑘 → +∞ it

can be established that Overlap Gap Property indeed appears in that regime. The proof follows

by almost identical arguments with the proof of Theorem 3.2.5 by setting 𝜁1,𝑘,𝑛 :=
𝑒7𝐷2

0𝜎
2

2𝑘
and

𝜁2,𝑘,𝑛 :=
𝑒7𝐷2

0𝜎
2

𝑘
.

We close this Section with stating a negative result on the popular recovery scheme called

LASSO. As explained in the Introduction, besides support recovery, LASSO above 𝑛alg samples

is known to also ℓ2-stably recover 𝛽* (see (3.2). Albeit it is known that below 𝑛alg samples,

LASSO fails to recover the support of 𝛽* [Wai09b], whether it can ℓ2-recover 𝛽* or not with less

than 𝑛alg samples remained an open problem prior to this work. We show that, as stated in the

introduction, when 𝑛/𝑛alg is sufficiently small, for a wide range of tuning parameters 𝜆 LASSO𝜆,

fails to ℓ2-stably recover the ground truth vector 𝛽*. Our result applies for LASSO𝜆 with and

without box constraints.

Furthermore, our result works for arbitrary choice of the tuning parameter 𝜆 as long as

𝜆 ≥ 𝜎√
𝑘
exp

(︂
−𝑘 log 𝑝

5𝑛

)︂
. (3.9)

Note that this range of possible 𝜆’s include the standard optimal choice in the literature of the

tuning parameter 𝜆 = 𝐴𝜎
√︀

log 𝑝/𝑛 for constant 𝐴 > 2
√
2 (see Introduction for details).

We present now the result.

Theorem 3.2.6. Suppose that 𝐶𝜎2 ≤ 𝑘 ≤ min{1, 𝜎2} exp
(︀
𝐶
√
log 𝑝

)︀
for some constants 𝐶,𝐶 >

0. Then, there exists a constant 𝑐 > 0 such that the following holds. If 𝑛* ≤ 𝑛 ≤ 𝑐𝑛alg, 𝛽* ∈ R𝑝 is

an exactly 𝑘-sparse binary vector, arbitrary choice of 𝜆 satisfying (3.9) and 𝛽LASSO,𝜆, 𝛽LASSO(box),𝜆

are the optimal solutions of the formulations LASSO𝜆 and LASSO(box)𝜆 respectively, then

min
(︁
‖𝛽LASSO,𝜆 − 𝛽*‖2, ‖𝛽LASSO(box),𝜆 − 𝛽*‖2

)︁
≥ exp

(︂
𝑘 log 𝑝

5𝑛

)︂
𝜎,

w.h.p. as 𝑘 → +∞.

Note that ℓ2 stable recovery means finding a vector 𝛽 such that ‖𝛽 − 𝛽*‖2 ≤ 𝐶 ′𝜎 for some

constant 𝐶 ′ > 0. The above theorem establishes that in the case of an exactly 𝑘-sparse and
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binary 𝛽*, when the samples size is less than 𝑘 log 𝑝 both the optimal solutions of LASSO𝜆 and

LASSO(box)𝜆 for any 𝜆 satisfying (3.9) fails to ℓ2-stable recover the ground truth vector 𝛽* by

a multiplicative factor which is exponential on the ratio 𝑘 log 𝑝
𝑛

. In particular, coupled with the

result from [BRT09b] this shows that 𝑘 log 𝑝 is the necessary and sufficient order of samples for

which LASSO can ℓ2-stable recover 𝛽* for some 𝜆 > 0 satisfying (3.9).

3.3 The Pure Noise Model

In this subsection we consider a modified model corresponding to the case 𝛽* = 0, which we dub

as pure noise model. This model serves as a technical building block towards proving Theorem

3.2.1. The model is described as follows.

The Pure Noise Model

Let 𝑋 ∈ R𝑛×𝑝 be an 𝑛×𝑝 matrix with i.i.d. standard normal entries, and 𝑌 ∈ R𝑛 be a vector with

i.i.d. 𝑁 (0, 𝜎2) entries. 𝑌,𝑋 are independent. We study the optimal value 𝜓2 of the following

optimization problem:

(Ψ2) min 𝑛− 1
2 ||𝑌 −𝑋𝛽||2

s.t. 𝛽 ∈ {0, 1}𝑝

||𝛽||0 = 𝑘.

That is, we no longer have ground truth vector 𝛽*, and instead search for a vector 𝛽 which makes

𝑋𝛽 as close to an independent vector 𝑌 as possible in ‖ · ‖2 norm. Note that (Ψ2) can be cast

also as a Gaussian Closest Vector Problem which estimates how well some vector of the form

𝑋𝛽 where 𝛽 is binary and 𝑘-sparse approximates in (rescaled) ℓ2 error an independent target

Gaussian vector 𝑌 .

We now state our main result for the pure noise model case.

Theorem 3.3.1. The following holds for all 𝑛, 𝑝, 𝑘, 𝜎:

P
(︂
𝜓2 ≥ 𝑒−3/2

√
𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂)︂
≥ 1− 𝑒−𝑛. (3.10)

113



Furthermore, for every 𝐶 > 0 and every sufficiently large constant 𝐷0, if 𝑘 log 𝑘 ≤ 𝐶𝑛, 𝑘 ≤ 𝜎2 ≤
3𝑘, and 𝑛 ≤ 𝑘 log 𝑝/(2 log𝐷0), the cardinality of the set

{︁
𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, 𝑛− 1

2‖𝑌 −𝑋𝛽‖2 ≤ 𝐷0

√
𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂}︁

is at least 𝐷
𝑛
3
0 w.h.p. as 𝑘 → ∞.

In the theorem above the value of the constant 𝐷0 may depend on 𝐶 (but does not depend

on any other parameters, such as 𝑛, 𝑝 or 𝑘). We note that in the second part of the theorem, our

assumption 𝑘 → ∞ by our other assumptions also implies that both 𝑛 and 𝑝 diverge to infinity.

The theorem above says that the value
√
𝑘 + 𝜎2 exp

(︀
−𝑘 log 𝑝

𝑛

)︀
is the tight value of 𝜓2 for the

optimization problem Ψ2, up to a multiplicative constant. Moreover, for the upper bound part,

according to the second part of the theorem, the number of solutions achieving asymptotically

this value is exponentially large in 𝑛. The assumption 𝑘 ≤ 𝜎2 ≤ 3𝑘 is adopted so that the result

of the theorem is transferable to the original model where 𝛽* is a 𝑘-sparse binary vector, in the

way made precise in the following section.

The proof of Theorem 3.3.1 is the subject of this section. The lower bound is obtained by a

simple moment argument. The upper bound is the part which consumes the bulk of the proof

and will employ a certain conditional second moment method. Since for any 𝑥 ∈ R𝑛 we have

𝑛− 1
2‖𝑥‖2 ≤ ‖𝑥‖∞, the result will be implied by looking instead at the cardinality of the set

{︁
𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, ‖𝑌 −𝑋𝛽‖∞ ≤ 𝐷0

√
𝑘 + 𝜎2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂}︁
, (3.11)

and establishing the same result for this set.

3.3.1 The Lower Bound. Proof of (3.10) of Theorem 3.3.1

Proof. Observe that 𝑝𝑘 ≥
(︀
𝑝
𝑘

)︀
implies exp

(︀
𝑘 log 𝑝

𝑛

)︀
≥
(︀
𝑝
𝑘

)︀ 1
𝑛 and therefore

P
(︂
𝜓2 ≥ 𝑒−

3
2 exp

(︂
−𝑘 log 𝑝

𝑛

)︂√
𝑘 + 𝜎2

)︂
≥ P

(︃
𝜓2 ≥ 𝑒−

3
2

(︂
𝑝

𝑘

)︂− 1
𝑛√

𝑘 + 𝜎2

)︃
.
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Thus it suffices to show

P

(︃
𝜓2 ≥ 𝑒−

3
2

(︂
𝑝

𝑘

)︂− 1
𝑛√

𝑘 + 𝜎2

)︃
≥ 1− 𝑒−𝑛.

Given any 𝑡 > 0, let

𝑍𝑡 = |{𝛽 ∈ {0, 1}𝑝 : |𝛽||0 = 𝑘, 𝑛− 1
2 ||𝑌 −𝑋𝛽||2 < 𝑡}|

=
∑︁

𝛽∈{0,1}𝑝|,|𝛽||0=𝑘

1
(︁
𝑛− 1

2 ||𝑌 −𝑋𝛽||2 < 𝑡
)︁
,

1 (𝐴) denotes the indicator function applied to the event 𝐴. Let 𝑡0 := 𝑒−
3
2

(︀
𝑝
𝑘

)︀− 1
𝑛 . Observe that

𝑡0 ∈ (0, 1). We have

P

(︃
𝜓2 < 𝑒−

3
2

(︂
𝑝

𝑘

)︂− 1
𝑛√

𝑘 + 𝜎2

)︃
= P

(︀
𝑍𝑡0

√
𝑘+𝜎2 ≥ 1

)︀

≤ E
[︀
𝑍𝑡0

√
𝑘+𝜎2

]︀
.

Now notice that 𝑍𝑡0
√
𝑘+𝜎2 is a sum of the

(︀
𝑝
𝑘

)︀
indicator variables, each one of them referring

to the event that a specific 𝑘-sparse binary 𝛽 satisfies 𝑛− 1
2 ||𝑌 − 𝑋𝛽||2 < 𝑡0

√
𝑘 + 𝜎2 namely it

satisfies ||𝑌 −𝑋𝛽||22 < 𝑡20 (𝑘 + 𝜎2)𝑛.

Furthermore, notice that for fixed 𝛽 ∈ {0, 1}𝑝 and 𝑘-sparse, 𝑌 − 𝑋𝛽 = 𝑌 −∑︀𝑖∈𝑆 𝑋𝑖 for

𝑆 , Support (𝛽), where 𝑋𝑖 is the 𝑖-th column of 𝑋. Hence since 𝑌,𝑋 are independent, 𝑌𝑖 are

i.i.d. 𝑁 (0, 𝜎2) and 𝑋𝑖,𝑗 are i.i.d. 𝑁 (0, 1), then ||𝑌 − 𝑋𝛽||22 is distributed as (𝑘 + 𝜎2)
∑︀𝑛

𝑖=1 𝑍
2
𝑖

where 𝑍𝑖 i.i.d. standard normal Gaussian, namely (𝑘 + 𝜎2) multiplied by a random variable with

chi-squared distribution with 𝑛 degrees of freedom. Hence for a fixed k-sparse 𝛽 ∈ {0, 1}𝑝, after

rescaling, it holds

P
(︁
||𝑌 −𝑋𝛽||2𝑛− 1

2 < 𝑡0
√
𝑘 + 𝜎2

)︁
= P

(︃
𝑛∑︁

𝑖=1

𝑍2
𝑖 ≤ 𝑡20𝑛

)︃
.
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Therefore

E
[︀
𝑍𝑡0

√
𝑘+𝜎2

]︀
= E

⎡
⎣ ∑︁

𝛽∈{0,1}𝑝|,|𝛽||0=𝑘

1
(︁
𝑛− 1

2 ||𝑌 −𝑋𝛽||2 < 𝑡
)︁
⎤
⎦

=

(︂
𝑝

𝑘

)︂
P
(︁
||𝑌 −𝑋𝛽||2𝑛− 1

2 < 𝑡0
√
𝑘 + 𝜎2

)︁

=

(︂
𝑝

𝑘

)︂
P

(︃
𝑛∑︁

𝑖=1

𝑍2
𝑖 ≤ 𝑡20𝑛

)︃
.

We conclude

P

(︃
𝜓2 < 𝑒−

3
2

(︂
𝑝

𝑘

)︂− 1
𝑛√

𝑘 + 𝜎2

)︃
≤ E

[︀
𝑍𝑡0

√
𝑘+𝜎2

]︀
=

(︂
𝑝

𝑘

)︂
P

(︃
𝑛∑︁

𝑖=1

𝑍2
𝑖 ≤ 𝑡20𝑛

)︃
. (3.12)

Using standards large deviation theory estimates (see for example [SW95]), for the sum of 𝑛

chi-square distributed random variables we obtain that for 𝑡0 ∈ (0, 1),

P

(︃
𝑛∑︁

𝑖=1

𝑍2
𝑖 ≤ 𝑛𝑡20

)︃
≤ exp (𝑛𝑓 (𝑡0)) (3.13)

with 𝑓 (𝑡0) ,
1−𝑡20+2 log(𝑡0)

2
.

Since 𝑓 (𝑡0) < 1
2
+ log 𝑡0, and as we recall 𝑡0 = 𝑒−

3
2

(︀
𝑝
𝑘

)︀− 1
𝑛 < 1 we obtain,

𝑓 (𝑡0) < −1− 1

𝑛
log

(︂
𝑝

𝑘

)︂
,

which implies

exp (𝑛𝑓 (𝑡0)) < exp (−𝑛)
(︂
𝑝

𝑘

)︂−1

,

which implies

(︂
𝑝

𝑘

)︂
exp (𝑛𝑓 (𝑡0)) < exp (−𝑛) .
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Hence using the above inequality, (3.13) and (3.12) we get

P

(︃
𝜓2 < 𝑒−

3
2

(︂
𝑝

𝑘

)︂− 1
𝑛√

𝑘 + 𝜎2

)︃
≤ exp (−𝑛) ,

and the proof of (3.10) is complete.

We now turn to proving the upper bound part of Theorem 3.3.1. We begin by establishing

several preliminary results.

3.3.2 Preliminaries

We first observe that 𝑘 log 𝑘 ≤ 𝐶𝑛 and 𝑛 ≤ 𝑘 log 𝑝/(2 log𝐷0), implies log 𝑘 ≤ 𝐶 log 𝑝/(2 log𝐷0).

In particular, for 𝐷0 sufficiently large

𝑘4 ≤ 𝑝. (3.14)

We establish the following two auxiliary lemmas.

Lemma 3.3.2. If 𝑚1,𝑚2 ∈ N with 𝑚1 ≥ 4 and 𝑚2 ≤
√
𝑚1 then

(︂
𝑚1

𝑚2

)︂
≥ 𝑚𝑚2

1

4𝑚2!
.

Proof. We have,

(︂
𝑚1

𝑚2

)︂
≥ 𝑚𝑚2

1

4𝑚2!

holds if an only if

𝑚2−1∏︁

𝑖=1

(︂
1− 𝑖

𝑚1

)︂
≥ 1

4
.
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Now 𝑚2 ≤
√
𝑚1 implies

𝑚2−1∏︁

𝑖=1

(︂
1− 𝑖

𝑚1

)︂
≥

⌊√𝑚1⌋∏︁

𝑖=1

(︂
1− 𝑖

𝑚1

)︂

≥
(︂
1− 1√

𝑚1

)︂√
𝑚1

,

It is easy to verify that 𝑥 ≥ 2 implies
(︀
1− 1

𝑥

)︀𝑥 ≥ 1
4
. This completes the proof.

Lemma 3.3.3. The function 𝑓 : [0, 1) → R defined by

𝑓 (𝜌) :=
1

𝜌
log

(︂
1− 𝜌

1 + 𝜌

)︂
,

for 𝜌 ∈ [0, 1) is concave.

Proof. The second derivative of 𝑓 equals

2
(︁
−4𝜌3 + (𝜌2 − 1)

2
log
(︁

1−𝜌
1+𝜌

)︁
+ 2𝜌

)︁

𝜌3 (1− 𝜌2)2
.

Hence, it suffices to prove that the function 𝑔 : [0, 1) → R defined by

𝑔 (𝜌) := −4𝜌3 +
(︀
𝜌2 − 1

)︀2
log

(︂
1− 𝜌

1 + 𝜌

)︂
+ 2𝜌

is non-positive. But for 𝜌 ∈ [0, 1)

𝑔′ (𝜌) = 4𝜌
(︀
1− 𝜌2

)︀
log

(︂
1 + 𝜌

1− 𝜌

)︂
− 10𝜌2 and 𝑔′′ (𝜌) = 4

(︂(︀
1− 3𝜌2

)︀
log

(︂
1 + 𝜌

1− 𝜌

)︂
− 3𝜌

)︂
.

We claim the second derivate of 𝑔 is always negative. If 1 − 3𝜌2 < 0, then 𝑔′′ (𝜌) < 0 is clearly

negative. Now suppose 1 − 3𝜌2 > 0. The inequality log (1 + 𝑥) ≤ 𝑥 implies log
(︁

1+𝜌
1−𝜌

)︁
≤ 2𝜌

1−𝜌
.

Hence,

𝑔′′ (𝜌) ≤ 4

(︂
2𝜌

1− 𝜌

(︀
1− 3𝜌2

)︀
− 3𝜌

)︂
= 4𝜌

3𝜌− 6𝜌2 − 1

1− 𝜌
< 0,
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where the last inequality follows from the fact that 3𝜌− 6𝜌2 − 1 < 0 for all 𝜌 ∈ R.

Therefore 𝑔 is concave and therefore 𝑔′ (𝜌) ≤ 𝑔′ (0) = 0 which implies that 𝑔 is also decreasing.

In particular for all 𝜌 ∈ [0, 1), 𝑔 (𝜌) ≤ 𝑔 (0) = 0.

For any 𝑡 > 0, 𝑦 ∈ R and a standard Gaussian random variable 𝑍 we let

𝑝𝑡,𝑦 := P (|𝑍 − 𝑦| ≤ 𝑡) . (3.15)

Observe that

𝑝𝑡,𝑦 =

∫︁

[−𝑡,𝑡]

1√
2𝜋
𝑒−

(𝑦+𝑥)2

2 𝑑𝑥 ≥
√︂

2

𝜋
𝑡𝑒−

𝑦2+𝑡2

2 ,

leading to

log 𝑝𝑡,𝑦 ≥ log 𝑡− 𝑡2

2
− 𝑦2

2
+ (1/2) log(2/𝜋). (3.16)

Similarly, for any 𝑡 > 0, 𝑦 ∈ R, 𝜌 ∈ [0, 1] we let

𝑞𝑡,𝑦,𝜌 := P (|𝑍1 − 𝑦| ≤ 𝑡, |𝑍2 − 𝑦| ≤ 𝑡) , (3.17)

where the random pair (𝑍1, 𝑍2) follows a bivariate normal distribution with correlation 𝜌. In

particular, 𝑞𝑡,𝑦,0 = 𝑝2𝑡,𝑦 and 𝑞𝑡,𝑦,1 = 𝑝𝑡,𝑦. We now state and prove a lemma which provides an

upper bound on the ratio 𝑞𝑡,𝑦,𝜌
𝑝2𝑡,𝑦

, for any 𝜌 ∈ [0, 1).

Lemma 3.3.4. For any 𝑡 > 0, 𝑦 ∈ R, 𝜌 ∈ [0, 1),

𝑞𝑡,𝑦,𝜌
𝑝2𝑡,𝑦

≤
√︂

1 + 𝜌

1− 𝜌
𝑒𝜌𝑦

2

.
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Proof. We have

𝑞𝑡,𝑦,𝜌 =
1

2𝜋
√︀

1− 𝜌2

∫︁

[𝑦−𝑡,𝑦+𝑡]2
exp

(︂
−𝑥

2 + 𝑧2 − 2𝜌𝑥𝑧

2 (1− 𝜌2)

)︂
𝑑𝑥𝑑𝑧

=
1

2𝜋
√︀

1− 𝜌2

∫︁

[𝑦−𝑡,𝑦+𝑡]2
exp

(︃
− (𝑥− 𝜌𝑧)2

2 (1− 𝜌2)
− 𝑧2

2

)︃
𝑑𝑥𝑑𝑧

≤ 1

2𝜋
√︀

1− 𝜌2

∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2

∫︁

[𝑦(1−𝜌)−𝑡(1+𝜌),𝑦(1−𝜌)+𝑡(1+𝜌)]

exp

(︂
− 𝑥21
2 (1− 𝜌2)

)︂
𝑑𝑥1,

where in the inequality we have introduced the change of variables (𝑥1, 𝑥2) = (𝑥− 𝜌𝑧, 𝑧) and

upper bounded the transformed domain by

[𝑦 (1− 𝜌)− 𝑡 (1 + 𝜌) , 𝑦 (1− 𝜌) + 𝑡 (1 + 𝜌)]× [𝑦 − 𝑡, 𝑦 + 𝑡].

Introducing another change of variable 𝑥1 = 𝑥3 (1 + 𝜌) + 𝑦 (1− 𝜌), the expression on the right-

hand side of the inequality above becomes

=
1

2𝜋
√︀

1− 𝜌2

∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2 (1 + 𝜌)

∫︁

[−𝑡,𝑡]

exp

(︃
−(𝑥3 (1 + 𝜌) + 𝑦 (1− 𝜌))2

2 (1− 𝜌2)

)︃
𝑑𝑥3,

= exp

(︂
−𝑦

2 (1− 𝜌)

2 (1 + 𝜌)

)︂
1

2𝜋

√︂
1 + 𝜌

1− 𝜌

∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2×

×
∫︁

[−𝑡,𝑡]

exp

(︃
−𝑥

2
3 (1 + 𝜌)2 + 2𝑥3𝑦 (1− 𝜌2)

2 (1− 𝜌2)

)︃
𝑑𝑥3

≤ exp

(︂
−𝑦

2 (1− 𝜌)

2 (1 + 𝜌)

)︂
1

2𝜋

√︂
1 + 𝜌

1− 𝜌

∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2

∫︁

[−𝑡,𝑡]

exp

(︂
−𝑥

2
3

2
+ 𝑥3𝑦

)︂
𝑑𝑥3

= exp

(︂
𝑦2𝜌

1 + 𝜌

)︂
1

2𝜋

√︂
1 + 𝜌

1− 𝜌

∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2

∫︁

[−𝑡,𝑡]

exp

(︃
−(𝑥3 + 𝑦)2

2

)︃
𝑑𝑥3

= exp

(︂
𝑦2𝜌

1 + 𝜌

)︂
1

2𝜋

√︂
1 + 𝜌

1− 𝜌

(︂∫︁

[𝑦−𝑡,𝑦+𝑡]

exp

(︂
−𝑥

2
2

2

)︂
𝑑𝑥2

)︂2

,

which is exactly:
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exp

(︂
𝑦2𝜌

1 + 𝜌

)︂√︂
1 + 𝜌

1− 𝜌
𝑝2𝑡,𝑦 ≤ exp

(︀
𝑦2𝜌
)︀√︂1 + 𝜌

1− 𝜌
𝑝2𝑡,𝑦

This completes the proof of Lemma 3.3.4.

3.3.3 Roadmap of the Upper Bound’s proof

Recall, that our goal is to establish the required bound on the cardinality of the set (3.11) instead.

Thus for every 𝑠 > 0 we consider the counting random variable of interest,

𝑍𝑠,∞ = |{𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, ||𝑌 −𝑋𝛽||∞ < 𝑠}|.

Our goal is to establish that under our assumptions for sufficiently large constant 𝐷0 > 0 and

𝑠 = 𝐷0

√
𝑘 + 𝜎2 exp

(︀
−𝑘 log 𝑝

𝑛

)︀
it holds

𝑍𝑠,∞ ≥ 𝐷
𝑛
3
0 (3.18)

w.h.p. as 𝑘 → +∞.

To establish this we use a conditional second moment method where the conditioning is

happening on the “target" vector 𝑌 . We first show that the conditional first moment satisfies a

similar property to (3.18); it holds

E[𝑍𝑠,∞|𝑌 ] ≥ 𝐷
𝑛
4
0 (3.19)

w.h.p. as 𝑘 → +∞ (Lemma 3.3.8). This step follows from standard algebraic manipulations and

an appropriate use of the Law of Large Numbers.

To establish (3.18) from (3.19) we study the conditional second moment E
[︀
𝑍2

𝑠,∞|𝑌
]︀

as well

and specifically the ratio the squared first moment,

ϒ = ϒ(𝑌 ) ,
E
[︁
𝑍2

𝑡
√
𝑘,∞|𝑌

]︁

E
[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀2 ,
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where we have used for convenience 𝑠 = 𝑡
√
𝑘 for some 𝑡 which throughout the proof of order

𝑂 (1). The second moment analysis is done in two parts. The first part is an observation; if

ϒ(𝑌 ) converges to 1 in expectation, then (3.19) implies (3.18). The proof of this part is based on

the fact that for any probability measure and any positive random variable 𝑅 using Chebyshev’s

inequality,

P
(︂
𝑅 <

E[𝑅]
2

)︂
≤ P

(︂
|𝑅− E[𝑅] | > E[𝑅]

2

)︂
≤ E[𝑅2]

E[𝑅]2
− 1. (3.20)

We then consider the conditional probability measure P on the random variable 𝑌 for our setting

and apply the above inequality for 𝑅 = 𝑍𝑡
√
𝑘,∞ to derive,

P
(︀
𝑍𝑡

√
𝑘,∞ ≥ E

[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀
|𝑌
)︀
≤ ϒ(𝑌 )− 1 (3.21)

and therefore

P
(︀
𝑍𝑡

√
𝑘,∞ ≥ E

[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀)︀
≤ E𝑌 {ϒ(𝑌 )− 1}. (3.22)

The first part follows immediately from (3.22).

Unfortunately we cannot establish that ϒ = ϒ(𝑌 ) converges to 1 in expectation due to a

lottery effect ; it turns out that ϒ can take arbitrary large values but with negligible probability

which make the expected value of ϒ to explode. The second part is to show that min{ϒ, 2}, the

truncated version of ϒ, indeed converges to 1 in expectation, as 𝑘 → +∞. The exact statement

of this part can be found in Proposition 3.3.5. Note that the argument with the Chebyshev’s

inequality described above can be easily adapted to work for the truncated version of ϒ simply

because the probability on the right hand side of (3.21) is upper bounded by 1 allowing to improve

(3.22) to

P
(︀
𝑍𝑡

√
𝑘,∞ ≥ E

[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀)︀
≤ E𝑌 {min{ϒ− 1, 1}} = E𝑌 {min{ϒ, 2} − 1}. (3.23)

Establishing Proposition 3.3.5 comprises the bulk of the proof and requires the use various

concentration of measure inequalities and properties of the (uni-variate and bi-variate) Gaussian

density function.
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3.3.4 Conditional second moment bounds

We start this subsection with obtaining estimates on E
[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀
and E

[︁
𝑍2

𝑡
√
𝑘,∞|𝑌

]︁
for 𝑡 = 𝑂 (1).

A direct calculation gives

E
[︀
𝑍𝑡

√
𝑘,∞|𝑌

]︀
=

(︂
𝑝

𝑘

)︂ 𝑛∏︁

𝑖=1

P
(︂
| 𝑌𝑖√
𝑘
− 𝑉 | < 𝑡

)︂
=

(︂
𝑝

𝑘

)︂ 𝑛∏︁

𝑖=1

𝑝
𝑡,

𝑌𝑖√
𝑘

,

where 𝑉 is a standard normal random variable and 𝑝𝑡,𝑦 was defined in (3.15). Similarly,

E
[︁
𝑍2

𝑡
√
𝑘,∞|𝑌

]︁
=

𝑘∑︁

ℓ=0

(︂
𝑝

𝑘 − ℓ, 𝑘 − ℓ, ℓ, 𝑝− 2𝑘 + ℓ

)︂ 𝑛∏︁

𝑖=1

P
(︁
|𝑌𝑖 − 𝑉 ℓ

1 | < 𝑡
√
𝑘, |𝑌𝑖 − 𝑉 ℓ

2 | < 𝑡
√
𝑘
)︁
,

where 𝑉 ℓ
1 , 𝑉

ℓ
2 are each 𝑁 (0, 𝑘) random variables with covariance 𝑙. In terms of 𝑞𝑡,𝑦,𝜌 defined in

(3.17) we have for every 𝑙,

P
(︁
|𝑌𝑖 − 𝑉 ℓ

1 | < 𝑡
√
𝑘, |𝑌𝑖 − 𝑉 ℓ

2 | < 𝑡
√
𝑘
)︁
= 𝑞

𝑡,
𝑌𝑖√
𝑘
, ℓ
𝑘

.

Hence,

E
[︁
𝑍2

𝑡
√
𝑘+𝜎2,∞|𝑌

]︁
=

𝑘∑︁

ℓ=0

(︂
𝑝

𝑘 − ℓ, 𝑘 − ℓ, ℓ, 𝑝− 2𝑘 + ℓ

)︂ 𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
, ℓ
𝑘

.

We obtain

ϒ = ϒ(𝑌 ) =
𝑘∑︁

ℓ=0

(︀
𝑝

𝑘−ℓ,𝑘−ℓ,ℓ,𝑝−2𝑘+ℓ

)︀
(︀
𝑝
𝑘

)︀2
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
, ℓ
𝑘

𝑝2
𝑡,

𝑌𝑖√
𝑘

.

Now for ℓ = 0 and all 𝑖 = 1, 2, ..., 𝑛 we have 𝑞
𝑡,

𝑌𝑖√
𝑘
,0
= 𝑝2

𝑡,
𝑌𝑖√
𝑘

a.s. and therefore the first term of

this sum equals ( 𝑝
𝑘,𝑘,𝑝−2𝑘)

(𝑝𝑘)
2 ≤ 1.

We now analyze terms corresponding to ℓ ≥ 1. We have for all ℓ = 1, .., 𝑘

(︂
𝑘

ℓ

)︂
≤ 𝑘ℓ

ℓ!
≤ 𝑘ℓ,

(︂
𝑝− 𝑘

𝑘 − ℓ

)︂
≤ (𝑝− 𝑘)𝑘−ℓ

(𝑘 − ℓ)!
.
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By (3.14) we have 𝑘4 ≤ 𝑝 implying 𝑘 ≤ √
𝑝 and applying Lemma 3.3.2 we have

(︂
𝑝

𝑘

)︂
≥ 𝑝𝑘

4𝑘!
.

Combining the above we get that for every ℓ = 1, ..., 𝑘 it holds:

(︀
𝑝

𝑘−ℓ,𝑘−ℓ,𝑙,𝑝−2𝑘+ℓ

)︀
(︀
𝑝
𝑘

)︀2 =

(︂
𝑘

ℓ

)︂(︀𝑝−𝑘
𝑘−ℓ

)︀
(︀
𝑝
𝑘

)︀ ≤ 𝑘ℓ
(𝑝− 𝑘)𝑘−ℓ

(𝑘 − ℓ)!

4𝑘!

𝑝𝑘
≤ 4

(︁ 𝑝
𝑘2

)︁−ℓ

.

Hence we have

ϒ ≤ 1 + 4
𝑘∑︁

ℓ=1

(︁ 𝑝
𝑘2

)︁−ℓ
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
, ℓ
𝑘

𝑝2
𝑡,

𝑌𝑖√
𝑘

. (3.24)

Our key result regarding the conditional second moment estimate and its ratio to the square of

the conditional first moment estimate is the following proposition.

Proposition 3.3.5. Suppose 𝑘 log 𝑘 ≤ 𝐶𝑛 for all 𝑘 and 𝑛 for some constant 𝐶 > 0. Then

for all sufficiently large constants 𝐷 > 0 there exists 𝑐 > 0 such that for 𝑛 ≤ 𝑘 log( 𝑝

𝑘2
)

2 log𝐷
and

𝑡 = 𝐷
√
1 + 𝜎2

(︀
𝑝
𝑘2

)︀− 𝑘
𝑛 we have

E𝑌 (min{1,ϒ− 1}) ≤ 1

𝑘𝑐
.

Proof. Fix a parameter 𝜁 ∈ (0, 1) which will be optimized later. We have,

E𝑌 (min{1,ϒ− 1}) = E𝑌 (min{1,ϒ− 1}1 (min{1,ϒ− 1} ≥ 𝜁𝑛))

+ E𝑌 (min{1,ϒ− 1}1 (min{1,ϒ− 1} ≤ 𝜁𝑛))

≤ P (min{1,ϒ− 1} ≥ 𝜁𝑛) + 𝜁𝑛.

Observe that if ϒ ≥ 1 + 𝜁𝑛, then (3.24) implies that at least one of the summands of

𝑘∑︁

ℓ=1

4
(︁ 𝑝
𝑘2

)︁−ℓ
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
,ℓ

𝑝2
𝑡,

𝑌𝑖√
𝑘

124



for ℓ = 1, 2.., 𝑘 should be at least 𝜁𝑛

𝑘
. Hence applying the union bound,

P (min{1,ϒ− 1} ≥ 𝜁𝑛) ≤ P (ϒ ≥ 1 + 𝜁𝑛)

≤ P

⎛
⎝

𝑘⋃︁

ℓ=1

{4
(︁ 𝑝
𝑘2

)︁−ℓ
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
, ℓ
𝑘

𝑝2
𝑡,

𝑌𝑖√
𝑘

≥ 𝜁𝑛

𝑘
}

⎞
⎠

≤
𝑘∑︁

ℓ=1

P

⎛
⎝4
(︁ 𝑝
𝑘2

)︁−ℓ
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
, ℓ
𝑘

𝑝2
𝑡,

𝑌𝑖√
𝑘

≥ 𝜁𝑛

𝑘

⎞
⎠

Introducing parameter 𝜌 = ℓ
𝑘

we obtain

E𝑌 (min{1,ϒ− 1}) ≤ 𝜁𝑛 + P (min{1,ϒ− 1} ≥ 𝜁𝑛) ≤ 𝜁𝑛 +
∑︁

𝜌= 1
𝑘
, 2
𝑘
,..,1

P (ϒ𝜌) , (3.25)

where for all 𝜌 = 1
𝑘
, .., 𝑘−1

𝑘
, 𝑘
𝑘

we define

ϒ𝜌 ,
{︁
4
(︁ 𝑝
𝑘2

)︁−𝜌𝑘
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
,𝜌

𝑝2
𝑡,

𝑌𝑖√
𝑘

≥ 𝜁𝑛

𝑘

}︁
.

Next we obtain an upper bound on P (ϒ𝜌) for any 𝜌 ∈ (0, 1] as a function of 𝜁. Set

𝜌* := 1− 𝑛 log𝐷

3𝑘 log(𝑝/𝑘2)
.

The cases 𝜌 ≤ 𝜌* and 𝜌 > 𝜌* will be considered separately.

Lemma 3.3.6. For all 𝜌 ∈ (𝜌*, 1] and 𝜁 ∈ (0, 1).

P (ϒ𝜌) ≤ 2𝑛
(︁
𝐷− 1

18 𝜁−
1
6

)︁𝑛
.

Proof. Since 𝜌 > 𝜌* then

− (1− 𝜌)
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
≥ −1

3
log𝐷. (3.26)

Now we have 𝑞
𝑡,

𝑌𝑖√
𝑘
,𝜌

≤ 𝑝
𝑡,

𝑌𝑖√
𝑘

which implies
𝑞
𝑡,

𝑌𝑖√
𝑘
,𝜌

𝑝2
𝑡,

𝑌𝑖√
𝑘

≤ 𝑝−1

𝑡,
𝑌𝑖√
𝑘

, which after taking logarithms and
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dividing both the sides by 𝑛 gives

P (ϒ𝜌) ≤ P

(︃
1

𝑛

𝑛∑︁

𝑖=1

− log 𝑝
𝑡,

𝑌𝑖√
𝑘

≥ log 𝜁 − log 4𝑘

𝑛
+ 𝜌

𝑘 log 𝑝
𝑘2

𝑛

)︃
.

Applying (3.16) we obtain

P (ϒ𝜌) ≤ P

(︃
− log 𝑡+

𝑡2

2
+

1

𝑛

𝑛∑︁

𝑖=1

𝑌 2
𝑖

2𝑘
+ (1/2) log(2/𝜋) ≥ log 𝜁 − log 4𝑘

𝑛
+ 𝜌

𝑘 log 𝑝
𝑘2

𝑛

)︃
,

Recall that 𝑡 = 𝐷
√
1 + 𝜎2

(︀
𝑝
𝑘2

)︀− 𝑘
𝑛 , namely log 𝑡 ≥ log𝐷 − 𝑘

𝑛
log
(︀

𝑝
𝑘2

)︀
and thus applying (3.26)

log 𝑡+ 𝜌
𝑘 log 𝑝

𝑘2

𝑛
≥ −(1− 𝜌)

𝑘 log 𝑝
𝑘2

𝑛
+ log𝐷

≥ 2

3
log𝐷.

By the bound on 𝑛, we have 𝑡 ≤ 𝐷
√
1 + 𝜎2/𝐷2 ≤ 2/𝐷 ≤ 1 for sufficiently large 𝐷. The same

applies to 𝑡2/2. Also since 𝑘 log 𝑘 ≤ 𝐶𝑛 then log(4𝑘)/𝑛 ≤ 𝐶/𝑘 + log 4/(𝑘 log 𝑘). Then for

sufficiently large 𝐷 we obtain

P (ϒ𝜌) ≤ P

(︃
1

𝑛

𝑛∑︁

𝑖=1

𝑌 2
𝑖

2𝑘
≥ log 𝜁 + (1/3) log𝐷

)︃

= P

(︃
exp

(︃
1

6

𝑛∑︁

𝑖=1

𝑌 2
𝑖

2𝑘

)︃
≥ 𝜁

𝑛
6𝐷

𝑛
18

)︃

≤ 1

𝜁
𝑛
6𝐷

𝑛
18

(︂
E
[︂
exp

(︂
𝑌 2
1

12𝑘

)︂]︂)︂𝑛

Recall that since 𝑌1 has distribution 𝑁(0, 𝜎2) and 𝜎2 ≤ 3𝑘 then

E
[︂
exp

(︂
𝑌 2
1

12𝑘

)︂]︂
=

1√︀
1− 2𝜎2/(12𝑘)

≤
√
2.

We obtain a bound

P (ϒ𝜌) ≤ 2𝑛
(︁
𝐷− 1

18 𝜁−
1
6

)︁𝑛
,
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as claimed.

Lemma 3.3.7. For all 𝜌 ∈ [ 1
𝑘
, 𝜌*] and 𝜁 ∈ (0, 1).

P (ϒ𝜌) ≤ 4𝑛
(︁
𝐷

1
2 𝜁𝑘
)︁−𝑛/12

.

Proof. Applying Lemma 3.3.4 we have

P (ϒ𝜌) = P

⎛
⎝4
(︁ 𝑝
𝑘2

)︁−𝜌𝑘
𝑛∏︁

𝑖=1

𝑞
𝑡,

𝑌𝑖√
𝑘
,𝜌

𝑝2
𝑡,

𝑌𝑖√
𝑘

≥ 𝜁𝑛

𝑘

⎞
⎠

≤ P

(︃
4
(︁ 𝑝
𝑘2

)︁−𝜌𝑘
𝑛∏︁

𝑖=1

(︂√︂
1 + 𝜌

1− 𝜌
exp

(︂
𝜌
𝑌 2
𝑖

𝑘

)︂)︂
≥ 𝜁𝑛

𝑘

)︃

= P

(︃
𝜌

𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘𝑛
≥ log 𝜁 − log 4𝑘

𝑛
+

1

2
log

(︂
1− 𝜌

1 + 𝜌

)︂
+
𝜌𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛

)︃

= P

(︃
𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘𝑛
≥ 𝜌−1 log 𝜁 − 𝜌−1 log 4𝑘

𝑛
+

1

2𝜌
log

(︂
1− 𝜌

1 + 𝜌

)︂
+
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛

)︃
.

Let

𝑓 (𝜌) = 𝜌−1 log 𝜁 − 𝜌−1 log 4𝑘

𝑛
+

1

2𝜌
log

(︂
1− 𝜌

1 + 𝜌

)︂
+
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
.

Applying Lemma 3.3.3 and that 𝜁 < 1 we can see that the function 𝑓 is concave. This implies

that the minimum value of 𝑓 for 𝜌 ∈ [ 1
𝑘
, 𝜌*] is either 𝑓

(︀
1
𝑘

)︀
or 𝑓 (𝜌*), and therefore

P (ϒ𝜌) ≤ P

(︃
𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘𝑛
≥ min{𝑓

(︂
1

𝑘

)︂
, 𝑓 (𝜌*)}

)︃

≤ P

(︃
𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘𝑛
≥ 𝑓

(︂
1

𝑘

)︂)︃
+ P

(︃
𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘𝑛
≥ 𝑓 (𝜌*)

)︃
. (3.27)

Now we apply a standard Chernoff type bound on P
(︁∑︀𝑛

𝑖=1
𝑌 2
𝑖

𝑘
≥ 𝑛𝑤

)︁
for 𝑤 ∈ R. We have

E[exp (𝜃𝑌 2
𝑖 /𝑘)] =

1√
1−2(𝜎2/𝑘)𝜃

< ∞ if 𝜃 < 1
2𝜎2/𝑘

. Since in our case 1 ≤ E
[︁
𝑌 2
𝑖

𝑘

]︁
= 𝜎2/𝑘 ≤ 3, to

127



obtain a finite bound we set 𝜃 = 1
12
< 1

6
and obtain

E
[︂
exp

(︂
𝑌 2
𝑖

12𝑘

)︂]︂
=

1√︁
1− 𝜎2

6𝑘

≤
√
2.

Therefore, we obtain

P

(︃
𝑛∑︁

𝑖=1

𝑌 2
𝑖

𝑘
≥ 𝑛𝑤

)︃
≤ exp

(︁
−𝑛 𝑤

12

)︁(︂
E
[︂
exp

(︂
𝑌 2
𝑖

12𝑘

)︂]︂)︂𝑛

≤ 2
𝑛
2 exp(−𝑛𝑤/12).

We obtain

P (ϒ𝜌) ≤ 2
𝑛
2 exp(−𝑛𝑓(1/𝑘)/12) + 2

𝑛
2 exp(−𝑛𝑓(𝜌*)/12). (3.28)

Now we obtain bounds on 𝑓
(︀
1
𝑘

)︀
and 𝑓 (𝜌*). We have

𝑓

(︂
1

𝑘

)︂
= 𝑘 log 𝜁 − 𝑘 log 4𝑘

𝑛
+
𝑘

2
log

(︂
1− 1

𝑘

1 + 1
𝑘

)︂
+
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
.

We have by our assumption 𝑘 log 𝑘 ≤ 𝐶𝑛 that 𝑘 log(4𝑘)/𝑛 ≤ 𝐶𝑘 log(4𝑘)/(𝑘 log 𝑘). The se-

quence 𝑘
2
log
(︁

1− 1
𝑘

1+ 1
𝑘

)︁
is bounded by a universal constant for 𝑘 ≥ 2. Finally, we have 𝑛 ≤

𝑘 log(𝑝/𝑘2)/(2 log𝐷). Thus for sufficiently large 𝐷,

𝑓

(︂
1

𝑘

)︂
≥ 𝑘 log 𝜁 + log𝐷,

implying

2
𝑛
2 exp(−𝑛𝑓(1/𝑘)/12) ≤ 2

𝑛
2

(︀
𝐷𝜁𝑘

)︀−𝑛/12
.

Now we will bound 𝑓 (𝜌*). We have

𝑓 (𝜌*) = (1/𝜌*) log 𝜁 − (1/𝜌*)
log 4𝑘

𝑛
+

1

2𝜌*
log

(︂
1− 𝜌*

1 + 𝜌*

)︂
+
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
.
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Applying upper bound on 𝑛, we have 𝜌* > 1/2. Then −1/(2𝜌*) log(1+ 𝜌*) ≥ − log 2. We obtain

𝑓 (𝜌*) = 2 log 𝜁 − 2
log 4𝑘

𝑛
+ log (1− 𝜌*) +

𝑘 log
(︀

𝑝
𝑘2

)︀

𝑛
.

We have again

2 log(4𝑘)/𝑛 ≤ 2𝐶 log(4𝑘/𝑘). (3.29)

Applying the value of 𝜌* we have

log (1− 𝜌*) +
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
= − log

(︂
3𝑘 log(𝑝/𝑘2)

𝑛 log𝐷

)︂
+
𝑘 log

(︀
𝑝
𝑘2

)︀

𝑛
.

Consider

− log

(︂
3𝑘 log(𝑝/𝑘2)

log𝐷

)︂
+ log 𝑛+

𝑘 log
(︀

𝑝
𝑘2

)︀

𝑛
.

For every 𝑎 > 0, the function log 𝑥 + 𝑎/𝑥 is a decreasing on 𝑥 ∈ (0, 𝑎] and thus, applying the

bound 𝑛 ≤ 𝑘 log(𝑝/𝑘2)/(2 log𝐷), the expression above is at least

− log

(︂
3𝑘 log(𝑝/𝑘2)

log𝐷

)︂
+ log

(︀
𝑘 log(𝑝/𝑘2)/(2 log𝐷)

)︀
+ 2 log𝐷 = − log 3− log 2 + 2 log𝐷

≥ (3/2) log𝐷,

for sufficiently large 𝐷. Combining with (3.29) we obtain that for sufficiently large 𝐷

𝑓(𝜌*) ≥ 2 log 𝜁 + log𝐷,

Combining two bounds we obtain

P (ϒ𝜌) ≤ 2
𝑛
2

(︀
𝐷𝜁𝑘

)︀− 𝑛
12 + 2

𝑛
2

(︀
𝐷𝜁2

)︀−𝑛/12

≤ 2
𝑛
2
+1
(︀
𝐷𝜁𝑘

)︀− 𝑛
12 .
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We now return to the proof of Proposition 3.3.5. Combining the results of Lemma 3.3.6 and

Lemma 3.3.7, and assuming 𝑘 ≥ 6 · 12 = 72, we obtain that

P (ϒ𝜌) ≤ 2𝑛
(︁
𝐷

1
18 𝜁6

)︁−𝑛

+ 2
𝑛
2
+1
(︀
𝐷𝜁𝑘

)︀−𝑛/12

≤ 2𝑛+1
(︁
𝐷

1
2 𝜁𝑘
)︁−𝑛/12

for all 𝜌 ∈ [1/𝑘, 1] and 𝜁 ∈ (0, 1). Recalling (3.25) we obtain

E𝑌 (min{1,ϒ− 1}) ≤ 𝜁𝑛 + (2𝑘)2𝑛
(︁
𝐷

1
2 𝜁𝑘
)︁−𝑛/12

.

Let 𝐷1 , 𝐷
1
2/212 and rewrite the bound above as

𝜁𝑛 + (2𝑘)
(︀
𝐷1𝜁

𝑘
)︀−𝑛/12

.

Assume 𝐷 is large enough so that 𝐷1 > 1 and let 𝜁 = 1/𝐷
1
2𝑘
1 < 1. We obtain a bound

𝐷
− 𝑛

2𝑘
1 + (2𝑘)𝐷

−𝑛/24
1 .

Finally since 𝑛 ≥ (1/𝐶)𝑘 log 𝑘, we obtain a bound of the form 1/𝑘𝑐 for some constant 𝑐 > 0 as

claimed. This completes the proof of Proposition 3.3.5.

3.3.5 The Upper Bound

Proof of Theorem 3.3.1. By an assumption of the theorem, we have 𝑘4 ≤ 𝑝. Thus

𝑘 log 𝑝 ≤ 2𝑘 log(𝑝/𝑘2).

Then

𝑛 ≤ 𝑘 log 𝑝

2 log𝐷0

≤ 𝑘 log(𝑝/𝑘2)

log𝐷0

=
𝑘 log(𝑝/𝑘2)

2 log𝐷
1
2
0

. (3.30)

130



Our goal is to obtain a lower bound on the cardinality of the set

{︁
𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, ‖𝑌 −𝑋𝛽‖∞ ≤ 𝐷0

√
𝑘
√︀
1 + 𝜎2/𝑘 exp

(︂
−𝑘 log 𝑝

𝑛

)︂}︁
,

Recall that 𝑘 ≤ 𝜎2 ≤ 3𝑘. Letting

𝑡0 = 𝐷0

√︀
1 + 𝜎2/𝑘 exp

(︂
−𝑘 log 𝑝

𝑛

)︂
,

our goal is then obtaining a lower bound on 𝑍𝑡0
√
𝑘. Since 𝑘 log 𝑘 ≤ 𝐶𝑛, then for sufficiently large

𝐷0,

𝑡0 ≥ 𝐷
1
2
0

√︀
1 + 𝜎2/𝑘 exp

(︂
−𝑘 log(𝑝/𝑘

2)

𝑛

)︂
, 𝜏,

and thus it suffices to obtain the claimed bound on 𝑍𝑡1
√
𝑘. We note that by our bound (3.30)

𝜏 ≤ 𝐷
1
2
0

√︀
1 + 𝜎2/𝑘/𝐷0 ≤ 2/𝐷

1
2
0 ≤ 1, (3.31)

provided 𝐷0 is sufficiently large. Let 𝐷 = 𝐷
1
2
0 . Then, by the definition of 𝜏 and by (3.30) the

assumptions of Proposition 3.3.5 are satisfied for this choice of 𝐷 and 𝑡 = 𝜏 .

Lemma 3.3.8. The following bound holds with high probability with respect to 𝑌 as 𝑘 increases

𝑛−1 logE
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
≥ (1/2) log𝐷.

Proof. As before for 𝑌 = (𝑌1, . . . , 𝑌𝑛),

E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
=

(︂
𝑝

𝑘

)︂ 𝑛∏︁

𝑖=1

P
(︂
| 𝑌𝑖√
𝑘
−𝑋| < 𝑡|𝑌

)︂
=

(︂
𝑝

𝑘

)︂ 𝑛∏︁

𝑖=1

𝑝
𝜏,

𝑌𝑖√
𝑘

,

where 𝑋 is the standard normal random variable. Taking logarithms,

logE
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
= log

(︂
𝑝

𝑘

)︂
+

𝑛∑︁

𝑖=1

log 𝑝
𝜏,

𝑌𝑖√
𝑘

. (3.32)
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Applying (3.16), we have

𝑛−1 logE
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
≥ 𝑛−1 log

(︂
𝑝

𝑘

)︂
+ log 𝜏 − 𝜏 2

2
+ (1/2) log(2/𝜋)− 𝑛−1

𝑛∑︁

𝑖=1

𝑌 2
𝑖

2𝑘

Using

𝜏 ≥ 𝐷 exp

(︂
−𝑘 log(𝑝/𝑘

2)

𝑛

)︂
,

and 𝜏 ≤ 1, we obtain

𝑛−1 logE
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
≥ 𝑛−1 log

(︂
𝑝

𝑘

)︂
+ log𝐷 − 𝑘 log(𝑝/𝑘2)

𝑛
− 1

2
+ (1/2) log(2/𝜋)− 𝑛−1

𝑛∑︁

𝑖=1

𝑌 2
𝑖

2𝑘

Since by (3.14) we have 𝑘 ≤ √
𝑝, applying Lemma 3.3.2 we have 1

𝑛
log
(︀
𝑝
𝑘

)︀
− 𝑘

𝑛
log
(︀

𝑝
𝑘2

)︀
≥ 0. By Law

of Large Numbers and since 𝑌𝑖 is distributed as 𝑁(0, 𝜎2) with 𝑘 ≤ 𝜎2 ≤ 3𝑘, we have 𝑛−1
∑︀𝑛

𝑖=1
𝑌 2
𝑖

2𝑘

converges to 𝜎2/(2𝑘) ≤ 3/2 as 𝑘 and therefore 𝑛 increases. Assuming 𝐷 is sufficiently large we

obtain that w.h.p. as 𝑘 increases,

𝑛−1 logE
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
≥ (1/2) log𝐷.

This concludes the proof of the lemma.

Now we claim that w.h.p. as 𝑘 increases,

𝑍𝜏
√
𝑘,∞ ≥ 1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
. (3.33)

We have

P
(︂
𝑍𝜏

√
𝑘,∞ <

1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀)︂
≤ P

(︂
|𝑍𝜏

√
𝑘,∞ − E

[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
| ≥ 1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀)︂
, (3.34)

and applying Chebyshev’s inequality we obtain,

P
(︂
|𝑍𝜏

√
𝑘,∞ − E

[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
| ≥ 1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
|𝑌
)︂

≤ 4min

⎡
⎣
E
[︁
𝑍2

𝜏
√
𝑘,∞|𝑌

]︁

E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀2 − 1, 1

⎤
⎦ .
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Hence, taking expectation over 𝑌 we obtain,

P
(︂
|𝑍𝜏

√
𝑘,∞ − E

[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
| ≥ 1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀)︂
≤ 4E𝑌

⎡
⎣min

⎡
⎣
E
[︁
𝑍2

𝜏
√
𝑘,∞|𝑌

]︁

E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀2 − 1, 1

⎤
⎦
⎤
⎦ .

We conclude

P
(︂
𝑍𝜏

√
𝑘,∞ <

1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀)︂
≤ 4E𝑌

⎡
⎣min

⎡
⎣
E
[︁
𝑍2

𝜏
√
𝑘,∞|𝑌

]︁

E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀2 − 1, 1

⎤
⎦
⎤
⎦ . (3.35)

Applying Proposition 3.3.5 the assumptions of which have been verified as discussed above, we

obtain

P
(︂
𝑍𝜏

√
𝑘,∞ <

1

2
E
[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀)︂
≤ E[min{1,ϒ− 1}|𝑌 ]

≤ 𝑘−𝑐,

for some 𝑐 > 0. This establishes the claim (3.33). Combining with Lemma 3.3.8, we conclude

that w.h.p. as 𝑘 increases

𝑛−1 log𝑍𝜏
√
𝑘,∞ ≥ 𝑛−1 logE

[︀
𝑍𝜏

√
𝑘,∞|𝑌

]︀
− log 2/𝑛

≥ (1/2) log𝐷 − log 2/𝑛.

Since 𝑛 satisfying 𝐶𝑛 ≥ 𝑘 log 𝑘 increases as 𝑘 increases, we conclude that w.h.p. as 𝑘 increases

𝑍𝜏
√
𝑘,∞ ≥ 𝐷

𝑛
3 . This concludes the proof of the theorem.

3.4 Proof of Theorem 3.2.1

In this section we prove Theorem 3.2.1. The proof is based on a reduction scheme to the simpler

optimization problem Ψ2 which is analyzed in the previous section.

To prove Theorem 3.2.1 we will also consider the following restriction of Φ2. For any 𝑆 ⊆
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Support (𝛽*) consider the optimization problem (Φ2 (𝑆)):

(Φ2 (𝑆)) min 𝑛− 1
2 ||𝑌 −𝑋𝛽||2

s.t. 𝛽 ∈ {0, 1}𝑝

||𝛽||0 = 𝑘, Support (𝛽) ∩ Support (𝛽*) = 𝑆,

and set 𝜑2 (𝑆) its optimal value. Notice that for a binary 𝑘-sparse 𝛽 with Support (𝛽) ∩
Support (𝛽*) = 𝑆 we have:

𝑌 −𝑋𝛽 = 𝑋𝛽* +𝑊 −𝑋𝛽

=
∑︁

𝑖∈Support(𝛽*)

𝑋𝑖 +𝑊 −
∑︁

𝑖∈Support(𝛽)
𝑋𝑖

=
∑︁

𝑖∈Support(𝛽*)−𝑆

𝑋𝑖 +𝑊 −
∑︁

𝑖∈Supp(𝛽)−𝑆

𝑋𝑖

= 𝑌 ′ −𝑋 ′𝛽1,

where we have defined 𝑌 ′, 𝑋 ′, 𝛽1 as following:

1. 𝑋 ′ ∈ R𝑛×(𝑝−𝑘) to be the matrix which is 𝑋 after deleting the columns corresponding to

Support(𝛽*)

2. 𝑌 ′ :=
∑︀

𝑖∈Support(𝛽*)−𝑆 𝑋𝑖 +𝑊

3. 𝛽1 ∈ {0, 1}𝑝−𝑘 is obtained from 𝛽 after deleting coordinates in Support(𝛽*). Notice that

||𝛽1||0 = 𝑘 − |𝑆|.

Hence, solving Φ2 (𝑆) can be written equivalently with respect to 𝑌 ′, 𝑋 ′, 𝛽′ as following,

(Φ2 (𝑆)) min 𝑛− 1
2 ||𝑌 ′ −𝑋 ′𝛽′||2

s.t. 𝛽′ ∈ {0, 1}𝑝−𝑘

||𝛽′||0 = 𝑘 − |𝑆|.

We claim that the above problem is satisfying all the assumptions of Theorem 3.3.1 ex-

cept for one of the assumptions which we discuss below. Indeed, 𝑌 ′, 𝑋 ′ are independent since

they are functions of disjoint parts of 𝑋, 𝑋 ′ has standard Gaussian i.i.d. elements, 𝑌 ′ =
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∑︀
𝑖∈Support(𝛽*)−𝑆 𝑋𝑖 +𝑊 has iid Gaussian elements with zero mean and variance (𝑘 − |𝑆|) + 𝜎2,

and the sparsity of 𝛽′ is 𝑘 − |𝑆|. The only difference is that the ratio between the variance

(𝑘 − |𝑆|) + 𝜎2 and the sparsity 𝑘 − |𝑆| is no longer necessarily upper bounded by 3, since this

holds if and only if 𝜎2 ≤ 2 (𝑘 − |𝑆|), which does not hold necessarily, though it does hold in the

special case 𝑆 = ∅, provided 𝜎2 ≤ 2𝑘. Despite the absence of this assumption for general 𝑆 we

can still apply the lower bound (3.10) of Theorem 3.3.1, since the restriction on the relative value

of the standard deviation of 𝑌𝑖 and other restrictions on 𝑝, 𝑛, 𝑘 were needed only for the upper

bound. Hence, applying the first part of Theorem 3.3.1 we conclude the optimal value 𝜑2 (𝑆)

satisfies

P
(︂
𝜑2 (𝑆) ≥ 𝑒−

3
2

√︀
2 (𝑘 − |𝑆|) + 𝜎2 exp

(︂
−(𝑘 − |𝑆|) log ((𝑝− 𝑘))

𝑛

)︂)︂

≥ 1− exp(−𝑛). (3.36)

Also applying the second part of this theorem to the special case 𝑆 = ∅ we obtain the following

corollary for the case 𝜎2 ≤ 2𝑘.

Corollary 3.4.1. Suppose 𝜎2 ≤ 2𝑘. For every 𝐶 > 0 and every sufficiently large constant 𝐷0,

if 𝑘 log 𝑘 ≤ 𝐶𝑛, and 𝑛 ≤ 𝑘 log(𝑝− 𝑘)/(2 log𝐷0), the cardinality of the set

{︁
𝛽 ∈ {0, 1}𝑝 : ‖𝛽‖0 = 𝑘, 𝑛− 1

2‖𝑌 ′ −𝑋 ′𝛽‖2 ≤ 𝐷0

√
2𝑘 + 𝜎2 exp

(︂
−𝑘 log(𝑝− 𝑘)

𝑛

)︂}︁

is at least 𝐷
𝑛
3
0 w.h.p. as 𝑘 → ∞.

Proof of Theorem 3.2.1. Applying the union bound and (3.36) we obtain

P
(︂
𝜑2 (ℓ) ≥ 𝑒−

3
2

√
2ℓ+ 𝜎2 exp

(︂
−ℓ log (𝑝− 𝑘)

𝑛

)︂
, ∀ 0 ≤ ℓ ≤ 𝑘

)︂

≥ 1−
∑︁

0≤ℓ≤𝑘

(︂
𝑘

ℓ

)︂
exp(−𝑛)

≥ 1− 2𝑘 exp(−𝑛).

Since 𝑘 log 𝑘 ≤ 𝐶𝑛, we have 2𝑘 exp(−𝑛) → 0 as 𝑘 increases. Replacing 𝑝− 𝑘 by a larger value 𝑝
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in the exponent we complete the proof of part (a) of the theorem.

We now establish the second part of the theorem. It follows almost immediately from Corol-

lary 3.4.1. Since 𝑘 log 𝑘 ≤ 𝐶𝑛, the bound 𝑛 ≤ 𝑘 log 𝑝/(3 log𝐷0) implies log 𝑘 ≤ 𝐶 log 𝑝/(3 log𝐷0)

and in particular 𝑘 log(𝑝− 𝑘) = 𝑘 log 𝑝−𝑂(𝑘
2

𝑝
) and 𝑘2

𝑝
converges to zero as 𝑘 increases, provided

𝐷0 is sufficiently large. Then we obtain 𝑛 ≤ exp(−𝑘 log(𝑝 − 𝑘)/(2 log 2𝐷0)) for all sufficiently

large 𝑘. By a similar reason we may now replace exp(−𝑘 log(𝑝 − 𝑘)) by exp(−𝑘 log 𝑝) in the

upper bound on 𝑛− 1
2‖𝑌 ′ − 𝑋 ′𝛽‖2 using the extra factor 2 in front of 𝐷0. This completes the

proof of the second part of the theorem.

3.5 The optimization problem Φ2

In this section we give proofs of Proposition 3.2.4 and Theorem 3.2.3.

Proof of Proposition 3.2.4. It is enough to study 𝑓 = log Γ with respect to monotonicity. We

compute the derivative for every 𝜁 ∈ [0, 1],

𝑓 ′ (𝜁) = −𝑘 log 𝑝
𝑛

+
𝑘

2𝜁𝑘 + 𝜎2
= − 𝑘

𝑛 (2𝜁𝑘 + 𝜎2)

(︀
log 𝑝

(︀
2𝜁𝑘 + 𝜎2

)︀
− 𝑛

)︀
.

Clearly, 𝑓 ′ is strictly decreasing in 𝜁 and 𝑓 ′ (𝜁) = 0 has a unique solution 𝜁* = 1
2𝑘 log 𝑝

(𝑛− 𝜎2 log 𝑝).

Using the strictly decreasing property of 𝑓 ′ and the fact that it has a unique root, we conclude

that for 𝜁 < 𝜁*, 𝑓 ′ (𝜁) > 0, and for 𝜁 > 𝜁*, 𝑓 ′ (𝜁) < 0. As a result, if 𝜁* ≤ 0 then 𝑓 is a

decreasing function on [0, 1], if 𝜁* ≥ 1 𝑓 is an increasing function on [0, 1], and if 𝜁* ∈ (0, 1) then

𝑓 is non monotonic. These cases are translated to the cases 𝑛 ≤ 𝜎2 log 𝑝, 𝑛 ≥ (2𝑘 + 𝜎2) log 𝑝

and 𝑛 ∈ (𝜎2 log 𝑝, (2𝑘 + 𝜎2) log 𝑝), respectively. The minimum value achieved by 𝑓 , and its

dependence on 𝑛info was already established earlier.

Proof of Theorem 3.2.3. We set

Λ𝑝 , argminℓ=0,1,..,𝑘𝜑2 (ℓ) ,

and we remind the reader that argminℓ=0,1,..,𝑘𝜑2 (ℓ) = 𝑘 − |Support (𝛽2) ∩ Support (𝛽*) |.
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Case 1: 𝑛 > (1 + 𝜖)𝑛info. Showing ‖𝛽2−𝛽*‖0/𝑘 → 0 as 𝑘 increases is equivalent to showing

Λ𝑝

𝑘
→ 0,

w.h.p. as 𝑘 increases. By the definition of Λ𝑝 we have:

𝜑2 (Λ𝑝) ≤ 𝜑2 (0) .

Recall the definition of function Γ from (3.8). From Theorem 3.2.1 we have that w.h.p. as 𝑘

increases that 𝜑2 (Λ𝑝) ≥ 𝑒−
3
2Γ
(︁

Λ𝑝

𝑘

)︁
. Combining the above two inequalities we derive that w.h.p.:

𝑒−
3
2Γ

(︂
Λ𝑝

𝑘

)︂
≤ 𝜑2 (0) . (3.37)

Now from 𝑌 = 𝑋𝛽* +𝑊 we have

𝜑2 (0) = 𝑛− 1
2 ||𝑌 −𝑋𝛽*||2 = 𝑛− 1

2 ||𝑊 ||2.

Hence,
1

𝜎2
𝜑2
2 (0) =

1

𝜎2
𝑛−1||𝑊 ||22 =

1

𝑛

𝑛∑︁

𝑖=1

(︂
𝑊𝑖

𝜎

)︂2

,

where 𝑊𝑖 are i.i.d. 𝑁 (0, 𝜎2). But by the Law of Large Numbers, w.h.p. 1
𝜎2𝜑

2
2 (0) =

1
𝑛

∑︀𝑛
𝑖=1

(︀
𝑊𝑖

𝜎

)︀2

is less than 4E
[︁(︀

𝑊𝑖

𝜎

)︀2]︁
= 4. Hence, since Γ (0) = 𝜎, this means that w.h.p. as 𝑘 (and therefore

𝑛) increases it holds:

𝜑2 (0) ≤ 2𝜎 = 2Γ (0) .

Combining this with (3.37) we get that w.h.p. as 𝑘 increases

𝑒−
3
2Γ

(︂
Λ𝑝

𝑘

)︂
≤ 2𝜎,

or equivalently

𝑒−
3
2

√︀
2Λ𝑝 + 𝜎2𝑒−

Λ𝑝 log 𝑝

𝑛 ≤ 2𝜎,
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which we rewrite as

𝑒−
3
2

√︂
2Λ𝑝

𝜎2
+ 1 ≤ 2𝑒

Λ𝑝 log 𝑝

𝑛 .

Now applying 𝑛 > (1 + 𝜖)𝑛info, we obtain,

2𝑒
Λ𝑝 log 𝑝

𝑛 < 2𝑒
Λ𝑝 log 𝑝

𝑛info(1+𝜖) = 2

(︂
2𝑘

𝜎2
+ 1

)︂ Λ𝑝
2(1+𝜖)𝑘

.

But Λ𝑝 ≤ 𝑘, and therefore

2

(︂
2𝑘

𝜎2
+ 1

)︂ Λ𝑝
2(1+𝜖)𝑘

≤ 2

(︂
2𝑘

𝜎2
+ 1

)︂ 1
2(1+𝜖)

.

Combining we obtain that w.h.p. as 𝑘 increases,

𝑒−
3
2

√︂
2Λ𝑝

𝜎2
+ 1 ≤ 2

(︂
2𝑘

𝜎2
+ 1

)︂ 1
2(1+𝜖)

,

which after squaring and rearranging gives w.h.p.,

2Λ𝑝

𝜎2
≤ 4𝑒3

(︂
2𝑘

𝜎2
+ 1

)︂ 1
(1+𝜖)

− 1,

which we further rewrite as

Λ𝑝

𝑘
≤ 𝜎2

2𝑘

(︃
4𝑒3
(︂
2𝑘

𝜎2
+ 1

)︂ 1
(1+𝜖)

− 1

)︃
. (3.38)

We claim that this upper bound tends to zero, as 𝑘 → +∞. Indeed, let 𝑥𝑘 = 𝑘
𝜎2 . By the

assumption of the theorem 𝑥𝑘 → +∞. But the right-hand side of (3.38) can be upper bounded

by a constant multiple of 𝑥−1
𝑘 𝑥

1
1+𝜖

𝑘 = 𝑥
− 𝜖

1+𝜖

𝑘 , which converges to zero as 𝑘 increases. Therefore

from (3.38), Λ𝑝

𝑘
→ 0 w.h.p. as 𝑘 increases, and the proof is complete in that case.

Case 2: 1
𝐶
𝑘 log 𝑘 < 𝑛 < (1− 𝜖)𝑛info. First we check that this regime for 𝑛 is well-defined.

Indeed the assumption max{𝑘, 2𝑘
𝜎2 + 1} ≤ exp

(︀√
𝐶 log 𝑝

)︀
implies that it holds

𝑛info =
2𝑘 log 𝑝

log
(︀
2𝑘
𝜎2 + 1

)︀ ≥ 2𝑘 log 𝑝√
𝐶 log 𝑝

≥ 2

𝐶
𝑘 log 𝑘 >

1

𝐶
𝑘 log 𝑘. (3.39)
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Now we need to show that w.h.p. as 𝑘 increases

Λ𝑝

𝑘
→ 1.

By the definition of Λ𝑝, 𝜑2 (Λ𝑝) ≤ 𝜑2 (1). Again applying Theorem 3.2.1 we have that w.h.p.

as 𝑘 increases it holds 𝜑2 (Λ𝑝) ≥ 𝑒−
3
2Γ
(︁

Λ𝑝

𝑘

)︁
. Combining the above two inequalities we obtain

that w.h.p.,

𝑒−
3
2Γ

(︂
Λ𝑝

𝑘

)︂
≤ 𝜑2 (1) . (3.40)

Now we apply the second part of Theorem 3.2.1. Given any 𝐷0 from part (b) of Theorem 3.2.1

and since 𝑘/𝜎 → ∞, we have that 1
𝐶
𝑘 log 𝑘 ≤ 𝑛 ≤ (1−𝜖)𝑛info furthermore then satisfies 1

𝐶
𝑘 log 𝑘 ≤

𝑛 ≤ 𝑘 log 𝑝/(3 log𝐷0) for all sufficiently large 𝑘. We obtain that w.h.p. as 𝑘 increases

𝜑2 (1) ≤ 𝐷0Γ (1) .

Using this in (3.40) and letting 𝑐 = 1/(𝑒
3
2𝐷0) we obtain

𝑐Γ

(︂
Λ𝑝

𝑘

)︂
≤ Γ (1) ,

namely,

𝑐

√︂
2Λ𝑝

𝜎2
+ 1𝑒−

Λ𝑝 log 𝑝

𝑛 ≤
√︂

2𝑘

𝜎2
+ 1𝑒−

𝑘 log 𝑝
𝑛 ,

and therefore

𝑐2
(︂
2Λ𝑝 + 𝜎2

2𝑘 + 𝜎2

)︂
= 𝑐2

(︃
2Λ𝑝

𝜎2 + 1
2𝑘
𝜎2 + 1

)︃
≤ 𝑒

2(Λ𝑝−𝑘) log 𝑝

𝑛 . (3.41)

Now using 𝑛 ≤ (1− 𝜖)𝑛info and Λ𝑝 − 𝑘 ≤ 0, we obtain

𝑒
2(Λ𝑝−𝑘) log 𝑝

𝑛 ≤ 𝑒
2(Λ𝑝−𝑘) log 𝑝

(1−𝜖)𝑛info =

(︂
2𝑘

𝜎2
+ 1

)︂− 𝑘−Λ𝑝
𝑘(1−𝜖)

.

Combining the above with (3.41) we obtain that w.h.p.,

𝑐2
(︂
2Λ𝑝 + 𝜎2

2𝑘 + 𝜎2

)︂
≤
(︂
2𝑘

𝜎2
+ 1

)︂− 𝑘−Λ𝑝
𝑘(1−𝜖)

,
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or w.h.p.,

𝑐2
(︂
2Λ𝑝

𝜎2
+ 1

)︂
≤
(︂
2𝑘

𝜎2
+ 1

)︂− 𝜖
1−𝜖

+
Λ𝑝

𝑘(1−𝜖)

. (3.42)

from which we obtain a simpler bound

𝑐2 ≤
(︂
2𝑘

𝜎2
+ 1

)︂− 𝜖
1−𝜖

+
Λ𝑝

𝑘(1−𝜖)

,

namely

2 log 𝑐 ≤
(︂
− 𝜖

1− 𝜖
+

Λ𝑝

𝑘 (1− 𝜖)

)︂
log

(︂
2𝑘

𝜎2
+ 1

)︂

or

2 log 𝑐

log
(︀
2𝑘
𝜎2 + 1

)︀ (1− 𝜖) + 𝜖 ≤ Λ𝑝

𝑘
.

Since by the assumption of the theorem we have 𝑘/𝜎2 → ∞, we obtain that Λ𝑝

𝑘
≥ 𝜖/2 w.h.p. as

𝑘 → ∞. Now we reapply this bound for (3.42) and obtain that w.h.p.

𝑐2
(︂
𝜖𝑘

𝜎2
+ 1

)︂
≤
(︂
2𝑘

𝜎2
+ 1

)︂− 𝜖
1−𝜖

+
Λ𝑝

𝑘(1−𝜖)

.

Taking logarithm of both sides, we obtain that w.h.p.

(1− 𝜖) log−1

(︂
2𝑘

𝜎2
+ 1

)︂(︂
log

(︂
𝜖𝑘

𝜎2
+ 1

)︂
+ 2 log 𝑐

)︂
+ 𝜖 ≤ Λ𝑝

𝑘
.

Now again since 𝑘/𝜎2 → ∞, it is easy to see that the ratio of two logarithms approaches unity

as 𝑘 increases, and thus the limit of the left-hand side is 1 − 𝜖 + 𝜖 = 1 in the limit. Thus Λ𝑝/𝑘

approaches unity in the limit w.h.p. as 𝑘 increases. This completes the proof.

3.6 The Overlap Gap Property

In this section we prove Theorem 3.2.5. We begin by establishing a certain property regarding

the the limiting curve function Γ.
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Lemma 3.6.1. Under the assumption of Theorem 3.2.5, there exist sequences 0 < 𝜁1,𝑘,𝑛 <

𝜁2,𝑘,𝑛 < 1 such that lim𝑘 𝑘 (𝜁2,𝑘,𝑛 − 𝜁1,𝑘,𝑛) = +∞ and such that for all sufficiently large 𝑘

inf
𝜁∈(𝜁1,𝑘,𝑛,𝜁2,𝑘,𝑛)

min

(︂
Γ (𝜁)

Γ (0)
,
Γ (𝜁)

Γ (1)

)︂
≥ 𝑒3𝐷0.

Proof. Recall that Γ (0) = 𝜎 and Γ (1) =
√
2𝑘 + 𝜎2 exp

(︀
−𝑘 log 𝑝

𝑛

)︀
. We will rely on the results of

Proposition 3.2.4 and thus recall the definition of 𝑛info.

Assume now 𝑛info ≤ 𝑛 < 𝑘 log 𝑝
3 log𝐷0

. We choose 𝜁1,𝑘,𝑛 = 1
5

and 𝜁2,𝑘,𝑛 = 1
4
. Clearly 𝑘 (𝜁2,𝑘,𝑛 − 𝜁1,𝑘,𝑛) →

+∞. Since 𝑛 ≥ 𝑛info we know that Γ (0) < Γ (1) and therefore it suffices to show

inf
𝜁∈(𝜁1,𝑘,𝑛,𝜁2,𝑘,𝑛)

Γ (𝜁)

Γ (1)
≥ 𝑒3𝐷0.

Using the log-concavitiy of Γ and squaring both side it suffices to establish

min

(︃(︂
Γ (𝜁1,𝑘,𝑛)

Γ (1)

)︂2

,

(︂
Γ (𝜁2,𝑘,𝑛)

Γ (1)

)︂2
)︃
> 𝑒6𝐷2

0.

But since 𝑛 < 𝑘 log 𝑝/(3 log𝐷0) have

min

(︃(︂
Γ (𝜁1,𝑘,𝑛)

Γ (1)

)︂2

,

(︂
Γ (𝜁2,𝑘,𝑛)

Γ (1)

)︂2
)︃

= min

(︃
2𝑘
5
+ 𝜎2

2𝑘 + 𝜎2
𝑒

4𝑘 log 𝑝
5𝑛 ,

3𝑘
4
+ 𝜎2

2𝑘 + 𝜎2
𝑒

3𝑘 log 𝑝
4𝑛

)︃

≥ min

(︂
1

4
𝐷

12
5
0 ,

2

3
𝐷

9
4
0

)︂

> 𝑒6𝐷2
0,

for all sufficiently large 𝐷0. This completes the proof of the lemma.

Now we return to the proof of Theorem 3.2.5.

Proof of Theorem 3.2.5. Choose 0 < 𝜁 ′1,𝑘,𝑛 < 𝜁 ′2,𝑘,𝑛 < 1 from Lemma 3.6.1 and we set 𝑟𝑘 =

𝐷0max (Γ (0) ,Γ (1)). We will now prove that for this value of 𝑟𝑘 and 𝜁1,𝑘,𝑛 = 1 − 𝜁 ′2,𝑘,𝑛, 𝜁2,𝑘,𝑛 =

1−𝜁 ′1,𝑘,𝑛, the set 𝑆𝑟𝑘 satisfies the claim of the theorem. Applying the second part of Theorem 3.2.1

we obtain 𝛽* ∈ 𝑆𝑟𝑘 since 𝑛− 1
2 ||𝑌 −𝑋𝛽*||2 = 𝑛− 1

2

√︀∑︀
𝑖𝑊

2
𝑖 which by the Law of Large Numbers

is w.h.p. at most 2𝜎 = 2Γ(0) < 𝑟𝑘, provided 𝐷0 is sufficiently large. This establishes (b). We
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also note that (c) follows immediately from Theorem 3.2.1.

We now establish part (a). Assume there exists a 𝛽 ∈ 𝑆𝑟𝑘 with overlap 𝜁 ∈ (𝜁1,𝑘,𝑛, 𝜁2,𝑘,𝑛).

This implies that the optimal value of the optimization problem Φ2(ℓ) satisfies

𝜑2 (𝑘 (1− 𝜁)) ≤ 𝑟𝑘. (3.43)

Now 1− 𝜁 ∈ (1− 𝜁2,𝑘,𝑛, 1− 𝜁1,𝑘,𝑛) =
(︀
𝜁 ′1,𝑘,𝑛, 𝜁

′
2,𝑘,𝑛

)︀
and Lemma 3.6.1 imply

𝑒3𝐷0max{Γ (0) ,Γ (1)} ≤ Γ (1− 𝜁) .

We obtain

𝑟𝑘 ≤ 𝑒−3Γ (1− 𝜁) ,

which combined with (3.43) contradicts the first part of Theorem 3.2.1.

3.7 Proof of Theorem 3.2.6

3.7.1 Auxilary Lemmata

Lemma 3.7.1. Fix any 𝐶1 > 0. Any vector 𝛽 that satisfies ‖𝛽‖1 ≤ 𝑘 − 𝐶1𝜎
√
𝑘 also satisfies

‖𝛽 − 𝛽*‖2 ≥ 𝐶1𝜎.

Proof. Assume 𝛽 satisfies ‖𝛽 − 𝛽*‖2 ≤ 𝐶1𝜎. We let 𝑆 denote the support of 𝛽*, and let 𝛽𝑆 ∈ R𝑝

be the vector which equals to 𝛽 in the coordinates that correspond to 𝑆 and is zero otherwise.

We have by the triangle inequality and the Cauchy Schwartz inequality,

𝑘 − ‖𝛽𝑆‖1 = ‖𝛽*
𝑆‖1 − ‖𝛽𝑆‖1 ≤ ‖𝛽𝑆 − 𝛽*

𝑆‖1 ≤
√
𝑘‖ (𝛽 − 𝛽*)𝑆 ‖2 ≤

√
𝑘‖𝛽 − 𝛽*‖2 ≤ 𝐶1𝜎

√
𝑘,

which gives 𝑘 − 𝐶1𝜎
√
𝑘 ≤ ‖𝛽𝑆‖1 ≤ ‖𝛽‖1.

We also need the following immediate corollary of Theorem 3.3.1.
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Corollary 1. Let 𝑌 ′ ∈ R𝑛 be a vector with i.i.d. normal entries with mean zero and abritrary

variance Var(𝑌1) and 𝑋 ∈ R𝑛×𝑝 be a matrix with iid standard Gaussian entries. Then for every

𝐶 > 0 there exists 𝑐0 > 0 such that if 𝑐 < 𝑐0 and for some integer 𝑘′ it holds 𝑘′ log 𝑘′ ≤ 𝐶𝑛,

𝑘′ ≤ Var (𝑌 ′
1) ≤ 3𝑘′, and 𝑛 ≤ 𝑐𝑘′ log 𝑝, then there exists an exactly 𝑘′-sparse binary 𝛽 such that

𝑛− 1
2‖𝑌 −𝑋𝛽‖2 ≤ exp

(︂
1

2𝑐

)︂√︀
𝑘′ +Var (𝑌 ′

1) exp

(︂
−𝑘

′ log 𝑝

𝑛

)︂

w.h.p. as 𝑘′ → ∞.

Finally, we establish the following Lemma.

Lemma 3.7.2. Under the assumptions of Theorem 3.2.6 there exists universal constants 𝑐 > 0

such that the following holds. If 𝑛* ≤ 𝑛 ≤ 𝑐𝑘 log 𝑝 then there exists 𝛼 ∈ [0, 1]𝑝 with

(1) 𝑛− 1
2‖𝑌 −𝑋𝛼‖2 ≤ 𝜎

(2) ‖𝛼‖1 = 𝑘 − 2 exp
(︀
𝑘 log 𝑝
5𝑛

)︀
𝜎
√
𝑘,

w.h.p. as 𝑘 → +∞.

Proof. Let

𝐶1 := exp

(︂
𝑘 log 𝑝

5𝑛

)︂
. (3.44)

Let

𝜆̃ := 1− 4𝐶1

√︂
𝜎2

𝑘

and

𝐴𝐶1 = {𝜆̃𝛽* + (1− 𝜆̃)𝛽|𝛽 ∈ {0, 1}𝑝, ‖𝛽‖0 = 𝑘/2, Support (𝛽) ∩ Support (𝛽*) = ∅}.

𝐴𝐶1 is the set of vectors of the form 𝛼 := 𝜆̃𝛽*+(1− 𝜆̃)𝛽 where 𝛽 is exactly 𝑘
2
-sparse binary with

support disjoint from the support of 𝛽*. Since by our assumption 𝑛 > 𝑛* or equivalently

𝑘 log 𝑝

5𝑛
<

1

10
log

(︂
1 +

2𝑘

𝜎2

)︂
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we conclude that for some 𝐶 ′ > 0 large enough, if 𝐶 ′𝜎2 ≤ 𝑘 then

4𝐶1

√︂
𝜎2

𝑘
= 4 exp

(︂
𝑘 log 𝑝

5𝑛

)︂√︂
𝜎2

𝑘
< 4

(︂
1 +

2𝑘

𝜎2

)︂ 1
10

√︂
𝜎2

𝑘
< 1.

In particular 𝜆̃ > 0 and thus 𝜆̃ ∈ [0, 1]. Therefore 𝐴𝐶1 ⊂ [0, 1]𝑝. It is straightforward to see also

that all these vectors have ℓ1 norm equal to 𝑘𝜆̃+ 𝑘(1− 𝜆̃)/2 = 𝑘(𝜆̃+ 1)/2. But for our choice of

𝜆̃ we have

𝑘(𝜆̃+ 1)/2 = 𝑘 − 2𝐶1𝜎
√
𝑘

Therefore for all 𝛼 ∈ 𝐴𝐶1 it holds ‖𝛼‖1 = 𝑘 − 2𝐶1𝜎
√
𝑘 and 𝛼 ∈ [0, 1]𝑝. In particular, in order to

prove our claim it is enough to find 𝛼 ∈ 𝐴𝐶1 with 𝑛− 1
2‖𝑌 −𝑋𝛼‖2 ≤ 𝜎.

We need to show that for some 𝑐 > 0, there exists w.h.p. a binary vector 𝛽 which is exactly

𝑘/2 sparse, has disjoint support with 𝛽* and also satisfies that

𝑛− 1
2‖𝑌 −𝑋(𝜆̃𝛽* + (1− 𝜆̃)𝛽)‖2 ≤ 𝜎.

We notice the following equalities:

‖𝑌 −𝑋(𝜆̃𝛽* + (1− 𝜆̃)𝛽)‖2 = ‖𝑋𝛽* +𝑊 − 𝜆̃𝑋𝛽* −
(︁
1− 𝜆̃

)︁
𝑋𝛽‖2

= (1− 𝜆̃)‖𝑋𝛽* +
(︁
1− 𝜆̃

)︁−1

𝑊 −𝑋𝛽‖2.

Hence the condition we need to satisfy can be written equivalently as

𝑛− 1
2‖𝑋𝛽* +

(︁
1− 𝜆̃

)︁−1

𝑊 −𝑋𝛽‖2 ≤
(︁
1− 𝜆̃

)︁−1

𝜎,

or equivalently

𝑛− 1
2‖𝑌 ′ −𝑋𝛽‖2 ≤

1

4

√
𝑘 exp

(︂
−𝑘 log 𝑝

5𝑛

)︂
,

where for the last equivalence we set 𝑌 ′ := 𝑋𝛽* + (1 − 𝜆)−1𝑊 and used the definition of 𝜆̃ for

the right hand side.

Now we apply Corollary 1 for 𝑌 ′ 𝑋 ′ ∈ R𝑛×(𝑝−𝑘), which is 𝑋 after we deleted the 𝑘 columns
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corresponding to the support of 𝛽*, and 𝑘′ = 𝑘/2. We first check that the assumptions of the

Theorem are satisfied. For all 𝑖, 𝑌 ′
𝑖 are iid zero mean Gaussian with

Var (𝑌 ′
𝑖 ) = 𝑘 + 𝜎2

(︁
1− 𝜆̃

)︁−2

= 𝑘(1 +
1

16
exp

(︂
−2𝑘 log 𝑝

5𝑛

)︂
).

In particular for some constant 𝑐0 > 0 if 𝑛 ≤ 𝑐0𝑘 log 𝑝 it holds

𝑘′ =
𝑘

2
≤ Var (𝑌 ′

𝑖 ) ≤ 3𝑘/2 = 3𝑘′.

Finally we need 𝑘′ log 𝑘′ ≤ 𝐶 ′𝑛 for some 𝐶 ′ > 0. For 𝑘′ = 𝑘
2

it holds 𝑘′ log 𝑘′ ≤ 𝑘 log 𝑘 and also

as 𝐶𝜎2 ≤ 𝑘 ≤ min{1, 𝜎2} exp
(︀
𝐶
√
log 𝑝

)︀
it can be easily checked that for some constant 𝐶 ′ > 0

it holds 𝑘 log 𝑘 ≤ 𝐶 ′ 2𝑘 log 𝑝

log( 2𝑘
𝜎2+1)

= 𝐶 ′𝑛*. As we assume 𝑛 ≥ 𝑛* we get 𝑘′ log 𝑘′ ≤ 𝐶 ′𝑛* ≤ 𝐶𝑛 as

needed. Therefore all the conditions are satisfied.

Applying Corollary 1 we obtain that for some constant 𝑐1 > 0 there exists w.h.p. an exactly

𝑘/2 sparse vector 𝛽 with disjoint support with 𝛽* and

𝑛− 1
2‖𝑌 ′ −𝑋𝛽‖2 ≤ exp

(︂
1

2𝑐1

)︂√︀
𝑘′ +Var (𝑌 ′

𝑖 ) exp

(︂
−𝑘

′ log(𝑝− 𝑘)

𝑛

)︂
.

Plugging in the value for 𝑘′ and using Var (𝑌 ′
𝑖 ) ≤ 3

2
𝑘 we conclude the w.h.p. existence of a binary

𝑘/2-sparse vector 𝛽 with disjoint support with 𝛽* and

𝑛− 1
2‖𝑌 ′ −𝑋𝛽‖2 ≤ exp

(︂
1

2𝑐1

)︂√
2𝑘 exp

(︂
−𝑘 log(𝑝− 𝑘)

2𝑛

)︂
.

Finally we need to verify

exp

(︂
1

2𝑐1

)︂√
2𝑘 exp

(︂
−𝑘 log(𝑝− 𝑘)

2𝑛

)︂
≤ 1

4

√
𝑘 exp

(︂
−𝑘 log 𝑝

5𝑛

)︂
.

We notice that as 𝑘/√𝑝 → 0 as 𝑘, 𝑝 → +∞, which is true since we assume 𝑘 ≤ exp
(︀
𝐶
√
log 𝑝

)︀
,

we have

exp

(︂
1

2𝑐1

)︂√
2𝑘 exp

(︂
−𝑘 log(𝑝− 𝑘)

2𝑛

)︂
≤ exp

(︂
1

2𝑐1

)︂√
2𝑘 exp

(︂
−𝑘 log 𝑝

3𝑛

)︂
, for large enough 𝑘, 𝑝.
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Hence we need to show

exp

(︂
1

2𝑐1

)︂√
2𝑘 exp

(︂
−𝑘 log 𝑝

3𝑛

)︂
≤ 1

4

√
𝑘 exp

(︂
−𝑘 log 𝑝

5𝑛

)︂
.

or equivalently

exp

(︂
1

2𝑐1

)︂√
2 ≤ 1

4
exp

(︂
2𝑘 log 𝑝

15𝑛

)︂

which is clearly satisfied if 𝑛 ≤ 𝑐3𝑘 log 𝑝 for some constant 𝑐3 > 0. Therefore choosing 𝑐 =

min{𝑐1, 𝑐3} the proof of the claim and of the theorem is complete.

3.7.2 Proofs of Theorem 3.2.6

In this subsection we use the Lemmata from the previous subsections and prove the Theorem

3.2.6.

Proof of Theorem 3.2.6. Let

𝐶1 := exp

(︂
𝑘 log 𝑝

5𝑛

)︂
. (3.45)

According the Lemma 3.7.1 it suffices to show that for 𝐶1 given by (3.45),

max{‖𝛽LASSO,𝜆‖1, ‖𝛽LASSO(box),𝜆‖1 ≤ 𝑘 − 𝐶1𝜎
√
𝑘, (3.46)

w.h.p. as 𝑘 → +∞.

To show this, we notice that since 𝛽LASSO,𝜆 and 𝛽LASSO(box),𝜆 are the optimal solutions to

LASSO𝜆 and LASSO(box)𝜆 respectively, they obtains objective value smaller then any other

feasible solution. Note that 𝛼 given in Lemma 3.7.2 is feasible for both quadratic optimization

problems LASSO𝜆 and LASSO(box)𝜆. Hence it holds almost surely,

max
𝑣∈{𝛽LASSO,𝜆,𝛽LASSO(box),𝜆}

{ 1
𝑛
‖𝑌 −𝑋𝑣‖22 + 𝜆𝑝‖𝑣‖1} ≤ 1

𝑛
‖𝑌 −𝑋𝛼‖22 + 𝜆𝑝‖𝛼‖1 (3.47)
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Hence we conclude that w.h.p. as 𝑘 → +∞,

𝜆max{‖𝛽LASSO,𝜆‖1, ‖𝛽LASSO(box),𝜆‖1 ≤ max
𝑣∈{𝛽LASSO,𝜆,𝛽LASSO(box),𝜆}

{ 1
𝑛
‖𝑌 −𝑋𝑣‖22 + 𝜆‖𝑣‖1}

≤ 1

𝑛
‖𝑌 −𝑋𝛼‖22 + 𝜆‖𝛼‖1 , using (3.47)

≤ 𝜎2 + 𝜆
(︁
𝑘 − 2𝐶1

√
𝑘𝜎
)︁

, using Lemma 3.7.2

or by rearranging,

𝜆
(︁
𝑘 − 𝐶1𝜎

√
𝑘 −max{‖𝛽LASSO,𝜆‖1, ‖𝛽LASSO(box),𝜆‖1}

)︁
≥
(︁
𝜆𝐶1

√
𝑘 − 𝜎

)︁
𝜎. (3.48)

By assumption on 𝜆 satisfying (3.9) we conclude from (3.45) that

𝜆𝐶1

√
𝑘 ≥ 𝜎.

Combining the last inequality we have that the right hand side of (3.48) is nonnegative, and

therefore (3.48) implies that

𝑘 − 𝐶1𝜎
√
𝑘 −max{‖𝛽LASSO,𝜆‖1, ‖𝛽LASSO(box)} ≥ 0

holds w.h.p. as 𝑘 → +∞ or equivalently (3.46) holds w.h.p. as 𝑘 → +∞.

This completes the proof of the Theorem 3.2.6.

3.8 Conclusion

In this Chapter, we study the hard regime [𝑛info, 𝑛alg] of the high dimensional linear regression

model under Gaussian assumptions on 𝑋,𝑊 and 𝛽* is an arbitrary fixed binary 𝑘-sparse vector.

Under sufficiently low sparsity max{𝑘/𝜎2 + 1, 𝑘} ≤ exp
(︀
𝐶
√
log 𝑝

)︀
for some 𝐶 > 0 and high

signal-to-noise ratio 𝑘/𝜎2 → +∞ we establish multiple results:

(1) We prove an all-or-nothing behavior for the statistical performance of the MLE of the

problem. This is similar in spirit to, and in fact was a motivation for, the phase transition

result established in Chapter 2. Yet the results are still different, as the result in Chapter 2
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assumes a uniform prior on 𝛽*, while the result in this Chapter applies to any fixed binary

𝑘-sparse 𝛽*.

(2) We establish that the first moment curve Γ (𝜁) undergoes monotonicity phase transitions

exactly at the thresholds 𝑛inf,1, 𝑛info, 𝑛alg. This monotonicity behavior suggests an Overlap

Gap Property phase transition in the high dimensional linear regression model exactly at

the conjectured algorithmic threshold 𝑛 = 𝑛alg.

(3) We prove that Overlap Gap Property indeed appears in the model when 𝑛 < 𝑐𝑛alg for some

small constant 𝑐 > 0. This is based on a potentially new result on what we call in this

Section as the Pure Noise model (Section 3.3), which could be of independent interest (see

also Section 1.4 for a relevant discussion.) In the next Chapter we present a proof that

Overlap Gap Property ceases to hold when 𝑛 > 𝐶𝑛alg establishing rigorously the desired

phase transition.

(4) We establish that the well-studied ℓ1-constrained relaxation recovery scheme LASSO prov-

ably fails in the regime 𝑛 < 𝑐𝑛alg to ℓ2-stably recover the vector 𝛽*. With this result we

provide support to the algorithmic hardness conjecture in the regime 𝑛 < 𝑛alg not only for

recovering the support of 𝛽* but for other similar, yet not equivalent, recovery tasks of 𝛽*.
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Chapter 4

The Computational-Statistical Gap of

High-Dimensional Linear Regression. The

Easy Regime.

4.1 Introduction

In this Chapter we continue our study of the computational-statistical gap of the high dimensional

linear regression model, which is initiated in Chapter 3. We remind the reader that we study the

model described in Subsection 1.1.1, under the assumptions that 𝑋 ∈ R𝑛×𝑝 and 𝑊 ∈ R𝑛×1 are

independent matrices with 𝑋𝑖𝑗
i.i.d.∼ 𝒩 (0, 1) and 𝑊𝑖

i.i.d.∼ 𝒩 (0, 𝜎2) for some 𝜎2 > 0, and finally 𝛽* is an

arbitrary but fixed binary 𝑘-sparse vector. In Chapter 2 it is established that 𝑛 = 𝑛info, defined

in 1.2, is the exact statistical limit of the problem, while computationally efficient methods are

only known to succeed when 𝑛 > 𝑛alg where 𝑛alg is defined in (1.3).

In Chapter 3, the compuational-statistical gap when 𝑛 ∈ [𝑛info, 𝑛alg] is studied. It is estab-

lished in Theorem 3.2.5 that the solution space of maximum likelihood estimation indeed exhibits

the Overlap Gap Property (OGP), appropriately defined, when 𝛽* is an arbitrary binary and

𝑘-sparse and 𝑛 < 𝑐𝑛alg for some small enough constant 𝑐 > 0. For this reason, and draw-

ing a correspondence with a large body of work in the literature for computational-existential

gaps mentioned in Chapter 1, Theorem 3.2.5 provides evidence of algorithmic hardness for high

dimensional linear regression when 𝑛 < 𝑐𝑛alg.
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On the other hand, in the literature it is conjectured that when OGP ceases to hold even

simple greedy local search methods can exploit the smooth geometry and succeed (see for example

the literature on the maximum independent set in Erdős-Rényi graphs [GSa],[RV14] and [GSb]).

To the best of our knowledge, neither OGP has been proven to be absent, nor any simple

local search algorithm is known to successfully work for high dimensional linear regression when

𝑛 > 𝑛alg.

In this Chapter we study the Overlap Gap Property for high dimensional linear regression

when 𝑛 > 𝑛alg. In that regime the questions of interest are:

Does Overlap Gap Property hold when 𝑛 > 𝑛alg?

If not, is there a successful greedy local search method in that regime?

We answer both questions when 𝑛 > 𝐶𝑛alg for some sufficiently large constant 𝐶 > 0. Specifically

we establish the following result.

Contribution

We establish that if 𝑛 ≥ 𝐶𝑛alg for some sufficiently large constant 𝐶 > 0, then OGP indeed

ceases to hold. We base this result on a direct local landscape analysos of the maximum likelihood

estimation optimization problem. We show that in this algorithmically easy regime, the landscape

is extremely smooth: all the local minima have identical support with the hidden vector 𝛽*.

Furthermore, we prove that for these values of 𝑛 a very simple Local Search Algorithm can exploit

the notably “smooth" local geometry of the solutions space and recover exactly the support of 𝛽*.

Interestingly, the termination time of the algorithm is proven to be independent of the feature

size 𝑝.

One distinct attribute of the results of this Chapter is that they generalize much beyond the

binary case for the values of 𝛽* and the sublinear sparsity condition 𝑘/𝑝 → 0, as 𝑝 → +∞. We

make this more precise with the following two bullet points.

(1) We show that the Local Search Algorithm (LSA) can be defined and provably work in the

real-valued case for the 𝑘-sparse 𝛽* under a constraint on its minimum value |𝛽*|min =

min{|𝛽*
𝑖 | : 𝛽*

𝑖 ̸= 0} ≥ 1. We prove that LSA outputs a vector with the same support of 𝛽*
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which furthermore satisfies

‖𝛽 − 𝛽*‖2 ≤ 𝐶0𝜎 (4.1)

for some constant 𝐶0 > 0. The notion of recovery (4.1) is known in the literature as ℓ2-

stable recovery of the vector of 𝛽*. (see e.g. [CRT06] [BD09] and references therein).

(2) All the results we present in this Chapter apply to any sparsity level 𝑘 ≤ 𝑝
3
.

Finally, at a technical level, most of the results presented in this Chapter are based on the

Restricted Isometry Property for the matrix 𝑋, the Hanson-Wright concentration inequality and

a careful net argument, which could be of independent interest (see Section 4.3 for details).

Notation

For a matrix 𝐴 ∈ R𝑛×𝑛 we use its operator norm ‖𝐴‖ := max𝑥 ̸=0
‖𝐴𝑥‖2
‖𝑥‖2 , and its Frobenius norm

‖𝐴‖𝐹 :=
(︁∑︀

𝑖,𝑗 |𝑎𝑖,𝑗|2
)︁ 1

2 . If 𝑛, 𝑑 ∈ N and 𝐴 ∈ R𝑑×𝑝 by 𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑝 we refer to the 𝑝 columns

of 𝐴. For 𝑝 ∈ (0,∞), 𝑑 ∈ N and a vector 𝑥 ∈ R𝑑 we use its ℒ𝑝-norm, ‖𝑥‖𝑝 := (
∑︀𝑝

𝑖=1 |𝑥𝑖|𝑝)
1
𝑝 . For

𝑝 = ∞ we use its infinity norm ‖𝑥‖∞ := max𝑖=1,...,𝑑 |𝑥𝑖| and for 𝑝 = 0, its 0-norm ‖𝑥‖0 = |{𝑖 ∈
{1, 2, . . . , 𝑑}|𝑥𝑖 ̸= 0}|. We say that 𝑥 is 𝑘-sparse if ‖𝑥‖0 ≤ 𝑘 and exactly 𝑘-sparse if ‖𝑥‖0 = 𝑘. We

also define the support of 𝑥, Support (𝑥) := {𝑖 ∈ {1, 2, . . . , 𝑑}|𝑥𝑖 ̸= 0}. For 𝑘 ∈ Z>0 we adopt the

notation [𝑘] := {1, 2, . . . , 𝑘}. Finally with the real function log : R>0 → R we refer everywhere

to the natural logarithm.

Structure of the Chapter

The remained of the Chapter is structured as follows. The description of the model, assumptions

and main results are found in the next section. Subsection 4.3 is devoted to the proof of the

absence of the Overlap Gap Property and the success of the local search algorithm in the regime

𝑛 ≥ 𝐶𝑛alg.
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4.2 Above 𝑛alg samples: The Absence of OGP and the suc-

cess of the Local Search Algorithm

Recall that according to (1.3), when 𝛽* is binary-valued, 𝑛alg = (2𝑘 + 𝜎2) log 𝑝. We work in this

Chapter under the assumption that 𝑛 ≥ 𝐶𝑛alg for some sufficiently large 𝐶 > 0. Furthermore,

all of the results presented in this section are in the regime where the signal to noise ratio (SNR)

𝑘/𝜎2 is at least a constant. In particular, this SNR assumption implies 𝑛alg = Θ(𝑘 log 𝑝). For

these reasons, for simplicity and without loss of generality, from now on, in this Chapter we use

the simplified notation 𝑛alg , 𝑘 log 𝑝.

We establish the absence of the OGP in the case 𝑛 ≥ 𝐶𝑛alg = 𝐶𝑘 log 𝑝 for sufficiently large

𝐶 > 0, w.h.p. For the same values of 𝑛 we also propose a very simple Local Search Algorithm

(LSA) for recovering 𝛽* which provably succeeds w.h.p. In fact our results for OGP is an easy

consequence of the success of LSA.

The Absence of OGP

We now state the definition of Overlap Gap Property (OGP) which generalizes the definition

used in Chapter 3 where it focuses only the binary case for 𝛽*.

Definition 4.2.1. Fix an instance of 𝑋,𝑊 . The regression problem defined by (𝑋,𝑊, 𝛽*) where

a vector 𝛽* is an exactly 𝑘-sparse vector with |𝛽*|min ≥ 1 satisfies the Overlap Gap Property

(OGP) if there exists 𝑟 = 𝑟𝑛,𝑝,𝑘,𝜎2 > 0 and constants 0 < 𝜁1 < 𝜁2 < 1 such that

(1) ‖𝑌 −𝑋𝛽*‖2 < 𝑟,

(2) There exists a 𝑘-sparse vector 𝛽 with Support(𝛽) ∩ Support(𝛽*) = ∅ and ‖𝑌 −𝑋𝛽‖2 < 𝑟,

and

(3) If a 𝑘-sparse vector 𝛽 satisfies ‖𝑌 −𝑋𝛽‖2 < 𝑟 then either

|Support(𝛽) ∩ Support(𝛽*)| < 𝜁1𝑘

or

|Support(𝛽) ∩ Support(𝛽*)| > 𝜁2𝑘.
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The OGP has a natural interpretation. It states that the 𝑘-sparse 𝛽s which achieve near

optimal cost for the objective value ‖𝑌 −𝑋𝛽‖2 split into two non-empty “well-separated" regions;

the ones whose support is close with the support of 𝛽* in the Hamming distance sense, and the

ones whose support is far from the support of 𝛽* in the Hamming distance sense, creating a

“gap" for the vectors with supports in a “intermediate" Hamming distance.

In Chapter 3 the authors prove that under the assumption 1
5
𝜎2 ≤ 𝑘 ≤ min{1, 𝜎2} exp

(︀
𝐶
√
log 𝑝

)︀

for some constant 𝐶 > 0 if 𝑛 satisfies 𝑛info < 𝑛 ≤ 𝑐𝑘 log 𝑝, for some sufficiently small constant

𝑐 > 0, then the OGP restricted for binary vectors holds for some 𝑟 > 0 and 𝜁1 =
1
5

and 𝜁2 =
1
4
.

Since OGP is associated with algorithmic hardness, it is naturally expected that OGP will not

hold when 𝑛 ≥ 𝐶𝑘 log 𝑝 for some constant 𝐶 > 0, which is the regime for 𝑛 where efficient

algorithms, such as LASSO, have been proven to work. We confirm this belief in the theorem

below.

Theorem 4.2.2. There exists 𝑐, 𝐶 > 0 such that if 𝜎2 ≤ 𝑐min{𝑘, log 𝑝
log log 𝑝

}, 𝑛 ≥ 𝐶𝑛alg the

following holds. If the 𝛽* is exactly 𝑘-sparse and satisfies |𝛽*|min ≥ 1 then the regression problem

(𝑋,𝑊, 𝛽*) does not satisfy the OGP w.h.p. as 𝑘 → +∞.

We now give some intuition of how this result is derived. The proof is based on a lemma on

the “local" behavior of the 𝑘-sparse 𝛽s with respect to the optimization problem

(Φ̃2) min ‖𝑌 −𝑋𝛽‖2
s.t. ‖𝛽‖0 ≤ 𝑘.

We first give a natural definition of what a non-trivial local minimum is for Φ̃2.

Definition 4.2.3. We define a 𝑘-sparse 𝛽 to be a non-trivial local minimum for Φ̃2 if

∙ Support (𝛽) ̸= Support (𝛽*), and

∙ if a 𝑘-sparse 𝛽1 satisfies

max{|Support (𝛽) ∖ Support (𝛽1) |, |Support (𝛽1) ∖ Support (𝛽) |} ≤ 1,

it must also satisfy

‖𝑌 −𝑋𝛽1‖2 ≥ ‖𝑌 −𝑋𝛽‖2.
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We continue with the observation that the presence of OGP deterministicaly implies the

existence of a non-trivial local minimum for the problem Φ̃2.

Proposition 4.2.4. Assume for some instance of 𝑋,𝑊 the regression problem (𝑋,𝑊, 𝛽*) satis-

fies the Overlap Gap Property. Then for this instance of 𝑋,𝑊 there exists at least one non-trivial

local minimum for Φ̃2.

Proof. Assume that OGP holds for some values 𝑟, 𝜁1, 𝜁2. We choose 𝛽1 the 𝑘-sparse vector 𝛽 that

minimizes ‖𝑌 −𝑋𝛽‖2 under the condition |Support(𝛽) ∩ Support(𝛽*)| ≤ 𝜁1𝑘. The existence of

𝛽1 is guaranteed as the space of 𝑘-sparse vectors with |Support(𝛽)∩Support(𝛽*)| ≤ 𝜁1𝑘 is closed

under the Euclidean metric.

We claim this is a non-trivial local minimum. Notice that it suffices to prove that 𝛽1 minimizes

also ‖𝑌 − 𝑋𝛽‖2 under the more relaxed condition |Support(𝛽) ∩ Support(𝛽*)| < 𝜁2𝑘. Indeed

then since 𝜁1𝑘 < 𝜁2𝑘, 𝛽1 will be the minimum over a region that contains its 2-neighborhood

in the Hamming distance and as clearly the support of 𝛽1 is not equal to the support of 𝛽* we

would be done.

Now to prove the claim consider a 𝛽 with 𝜁1𝑘 < |Support(𝛽) ∩ Support(𝛽*)| < 𝜁2𝑘. By the

Overlap Gap Property we know that it must hold ‖𝑌 − 𝑋𝛽‖2 > 𝑟. Furthermore again by the

Overlap Gap Property we know there is a 𝛽′ with |Support(𝛽′) ∩ Support(𝛽*)| = 0 < 𝜁1𝑘 for

which it holds ‖𝑌 − 𝑋𝛽′‖2 < 𝑟. But by the definition of 𝛽1 it must also hold ‖𝑌 − 𝑋𝛽1‖2 ≤
‖𝑌 −𝑋𝛽′‖2 < 𝑟 which combined with ‖𝑌 −𝑋𝛽‖2 > 𝑟 implies ‖𝑌 −𝑋𝛽1‖2 < ‖𝑌 −𝑋𝛽‖2. Since

the 𝛽 was arbitrary with 𝜁1𝑘 < |Support(𝛽)∩ Support(𝛽*)| < 𝜁2𝑘 the proof of the Proposition is

complete.

Now in light of the Proposition above, we know that a way to negate OGP is to prove the

absence of non-trivial local minima for Φ̃2. We prove that indeed if 𝑛 ≥ 𝐶𝑘 log 𝑝 for some

universal 𝐶 > 0 our regression model does not have non-trivial local minima for Φ̃2 w.h.p. and

in particular OGP does not hold in this regime w.h.p., as claimed. We state this as a separate

result as it could be of independent interest.

Theorem 4.2.5. There exists 𝑐, 𝐶 > 0 such that if 𝜎2 ≤ 𝑐min{𝑘, log 𝑝
log log 𝑝

}, 𝑛 ≥ 𝐶𝑛alg such that

the following is true. If the 𝛽* is exactly 𝑘-sparse and satisfies |𝛽*|min ≥ 1 then the optimization

problem (Φ̃2) has no non-trivial local minima w.h.p. as 𝑘 → +∞.
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The complete proofs of both Theorem 4.2.2 and Theorem 4.2.5 are presented in Section 4.

Success of Local Search

As stated in the introduction, in parallel to many results for random constrained satisfaction

problems, the disappearance of OGP suggests the existence of a very simple algorithm succeeding

in recovering 𝛽*, usually exploiting the smooth local structure. Here, we present a result that

reveals a similar picture. A natural implication of the absence of non-trivial local minima property

is the success w.h.p. of the following very simple local search algorithm. Start with any vector 𝛽0

which is 𝑘-sparse and then iteratively conduct “local" minimization among all 𝛽’s with support

of Hamming distance at most two away from the support of our current vector.

We now state this algorithm formally. Let 𝑒𝑖 ∈ R𝑝, 𝑖 = 1, 2, . . . , 𝑝 be the standard basis

vectors of R𝑝.

Local Search Algorithm (LSA)

0. Input: A 𝑘-sparse vector 𝛽 with support 𝑆.

1. For all 𝑖 ∈ 𝑆 and 𝑗 ∈ [𝑝] compute err𝑖 (𝑗) = min𝑞 ‖𝑌 −𝑋𝛽 + 𝛽𝑖𝑋𝑖 − 𝑞𝑋𝑗‖2.

2. Find (𝑖1, 𝑗1) = argmin𝑖∈𝑆,𝑗∈[𝑝]err𝑖 (𝑗) and 𝑞1 := argmin𝑞∈R‖𝑌 −𝑋𝛽 + 𝛽𝑖1𝑋𝑖1 − 𝑞𝑋𝑗1‖2.

3. If ‖𝑌 −𝑋𝛽 + 𝛽𝑖1𝑋𝑖1 − 𝑞1𝑋𝑗1‖2 < ‖𝑌 −𝑋𝛽‖2, update the vector 𝛽 to 𝛽 − 𝛽𝑖1𝑒𝑖1 + 𝑞𝑒𝑗1 , the

set 𝑆 to the support of the new 𝛽 and go to step 1. Otherwise terminate and output 𝛽.

For the performance of the algorithm we establish the following result.

Theorem 4.2.6. There exist 𝑐, 𝐶 > 0 so that if 𝛽* ∈ R𝑝 is an exactly 𝑘-sparse vector, 𝑛 ≥ 𝐶𝑛alg

and 𝜎2 ≤ 𝑐|𝛽*|2min min{ log 𝑝
log log 𝑝

, 𝑘} then the algorithm LSA with an arbitrary 𝑘-sparse vector 𝛽0 as

input terminates in at most 4𝑘‖𝑌−𝑋𝛽0‖22
𝜎2𝑛

iterations with a vector 𝛽 such that

(1) Support
(︁
𝛽
)︁
= Support (𝛽*) and

(2) ‖𝛽 − 𝛽*‖2 ≤ 𝜎,

w.h.p. as 𝑘 → +∞.

The complete proof of Theorem 4.2.6 is presented in subsection 4.3.3. Various auxiliary

lemmas are established in the Subsections in between.
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4.3 LSA Algorithm and the Absence of the OGP

4.3.1 Preliminaries

We introduce the notion of a super-support of a finite dimensional real vector.

Definition 4.3.1. Let 𝑑 ∈ N. We call a set ∅ ̸= 𝑆 ⊆ [𝑑] a super-support of a vector 𝑥 ∈ R𝑑 if

Support (𝑥) ⊆ 𝑆.

We also need the definition and some basic properties of the Restricted Isometry Property

(RIP).

Definition 4.3.2. Let 𝑛, 𝑘, 𝑝 ∈ N with 𝑘 ≤ 𝑝. We say that a matrix 𝑋 ∈ R𝑛×𝑝 satisfies the

𝑘-Restricted Isometry Property (𝑘-RIP) with restricted isometric constant 𝛿𝑘 ∈ (0, 1) if for

every vector 𝛽 ∈ R𝑝 which is 𝑘-sparse it holds

(1− 𝛿𝑘)‖𝛽‖22𝑛 ≤ ‖𝑋𝛽‖22 ≤ (1 + 𝛿𝑘)‖𝛽‖22𝑛.

A proof of the following theorem can be found in [BDDW08].

Theorem 4.3.3. [BDDW08] Let 𝑛, 𝑘, 𝑝 ∈ N with 𝑘 ≤ 𝑝. Suppose 𝑋 ∈ R𝑛×𝑝 has i.i.d. standard

Gaussian entries. Then for every 𝛿 > 0 there exists a constant 𝐶 = 𝐶𝛿 > 0 such that if

𝑛 ≥ 𝐶𝑘 log 𝑝 then 𝑋 satisfies the 𝑘-RIP with restricted isometric constant 𝛿𝑘 < 𝛿 w.h.p.

We need the following properties of RIP.

Proposition 4.3.4. Let 𝑛, 𝑘, 𝑝 ∈ N with 𝑘 ≤ 𝑝. Suppose 𝑋 ∈ R𝑛×𝑝 satisfies the 𝑘-RIP with

restricted isometric constant 𝛿𝑘 ∈ (0, 1). Then for any 𝑣, 𝑤 ∈ R𝑝 which are 𝑘-sparse,

(1)

|(𝑋𝑣)𝑇 (𝑋𝑤)| ≤ (1 + 𝛿𝑘)‖𝑣‖2‖𝑤‖2𝑛 ≤ 2‖𝑣‖2‖𝑤‖2𝑛.

(2) If 𝑣, 𝑤 have a common super-support of size 𝑘 then

‖𝑋𝑤‖22 + 4‖𝑣 − 𝑤‖2‖𝑤‖2𝑛+ 2‖𝑣 − 𝑤‖22𝑛 ≥ ‖𝑋𝑣‖2 ≥ ‖𝑋𝑤‖22 − 4‖𝑣 − 𝑤‖2‖𝑤‖2𝑛.
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(3) If 𝑣, 𝑤 have disjoint supports and a common super-support of size 𝑘 then

|(𝑋𝑣)𝑇 (𝑋𝑤)| ≤ 𝛿𝑘
(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛.

Proof. The first part follows from the Cauchy-Schwarz inequality and the definiton of 𝑘-RIP

applied to the vectors 𝑣, 𝑤. For the second part we write 𝑋𝑣 = 𝑋(𝑤 + (𝑣 − 𝑤)), and we have

‖𝑋𝑣‖22 = ‖𝑋𝑤‖22 + 2 (𝑋(𝑣 − 𝑤))𝑇 (𝑋𝑤) + ‖𝑋(𝑣 − 𝑤)‖22.

Since 𝑣, 𝑤 have a common super-support of size 𝑘, the vectors 𝑣 − 𝑤,𝑤 are 𝑘-sparse vectors.

Hence from the first part we have

−2‖𝑣 − 𝑤‖2‖𝑤‖2𝑛 ≤ |𝑋(𝑣 − 𝑤)𝑇𝑋𝑤| ≤ 2‖𝑣 − 𝑤‖2‖𝑤‖2𝑛

0 ≤ ‖𝑋(𝑣 − 𝑤)‖22 ≤ 2‖𝑣 − 𝑤‖22𝑛.

Applying these inequalities to the last equality, the proof follows.

For the third part since 𝑣, 𝑤 are 𝑘-sparse and have a common super-support of size 𝑘 the

vectors 𝑣+𝑤 and 𝑣−𝑤 are 𝑘-sparse vectors. Hence by 𝑘-RIP and that 𝑣, 𝑤 have disjoint supports

we obtain

‖𝑋(𝑣 + 𝑤)‖22 ≤ (1 + 𝛿𝑘)‖𝑣 + 𝑤‖22𝑛 = (1 + 𝛿𝑘)
(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛

and similarly

‖𝑋(𝑣 − 𝑤)‖22 ≥ (1− 𝛿𝑘)
(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛.

Hence

|(𝑋𝑣)𝑇 (𝑋𝑤)| = |1
4

[︀
‖𝑋(𝑣 + 𝑤)‖22 − ‖𝑋(𝑣 − 𝑤)‖22

]︀
|

≤ 1

4
|(1 + 𝛿𝑘)

(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛− (1− 𝛿𝑘)

(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛|

≤ 𝛿𝑘
(︀
‖𝑣‖22 + ‖𝑤‖22

)︀
𝑛,

as required.
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Finally, we need the so-called Hanson-Wright inequality.

Theorem 4.3.5 (Hanson-Wright inequality, [HW71]). There exists a constant 𝑑 > 0 such that

the following holds. Let 𝑛 ∈ N, 𝐴 ∈ R𝑛×𝑛 and 𝑡 ≥ 0. Then for a vector 𝑋 ∈ R𝑛 with i.i.d.

standard Gaussian components

P
(︀
|𝑋 𝑡𝐴𝑋 − E

[︀
𝑋 𝑡𝐴𝑋

]︀
| > 𝑡

)︀
≤ 2 exp

[︂
−𝑑min

(︂
𝑡2

‖𝐴‖2F
,
𝑡

‖𝐴‖

)︂]︂
.

4.3.2 Study of the Local Structure of (Φ̃2)

We start by introducing the notion of an 𝛼-deviating local minimum (𝛼-DLM).

Definition 4.3.6. Let 𝑛, 𝑝 ∈ N,𝛼 ∈ (0, 1), 𝑋 ∈ R𝑛×𝑝 and ∅ ̸= 𝑆1, 𝑆2, 𝑆3 ⊆ [𝑝]. A triplet of

vectors (𝑎, 𝑏, 𝑐) with 𝑎, 𝑏, 𝑐 ∈ R𝑝 is called an 𝛼-deviating local minimum (𝛼-D.L.M.) with

respect to 𝑆1, 𝑆2, 𝑆3 and to the matrix 𝑋 if the following are satisfied:

∙ The sets 𝑆1, 𝑆2, 𝑆3 are pairwise disjoint and the vectors 𝑎, 𝑏, 𝑐 have super-supports 𝑆1, 𝑆2, 𝑆3

respectively.

∙ |𝑆1| = |𝑆2| and |𝑆1|+ |𝑆2|+ |𝑆3| ≤ 3𝑘.

∙ For all 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2

‖ (𝑋𝑎− 𝑎𝑖𝑋𝑖) + (𝑋𝑏− 𝑏𝑗𝑋𝑗) +𝑋𝑐‖22 ≥ ‖𝑋𝑎+𝑋𝑏+𝑋𝑐‖22 − 𝛼

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛. (4.2)

Remark 4.3.7. In several cases in what follows we call a triplet (𝑎, 𝑏, 𝑐) an 𝛼-DLM with respect

to a matrix 𝑋 without explicitly referring to their corresponding super-sets 𝑆1, 𝑆2, 𝑆3 but we do

always assume their existence.

We first establish the following algebraic claim for the DLM property.

Claim 4.3.8. Let 𝑛, 𝑝, 𝑘 ∈ N with 𝑘 ≤ 1
3
𝑝. Suppose a matrix 𝑋 ∈ R𝑛×𝑝 satisfies the 3𝑘-RIP for

some isometric constant 𝛿3𝑘 ∈ (0, 1) and that for some 𝛼 ∈ (0, 1) a triplet (𝑎, 𝑏, 𝑐) is an 𝛼-D.L.M.

with respect to 𝑋. Then

‖𝑋 (𝑎+ 𝑏) ‖22 + 2(𝑋𝑐)𝑇 (𝑋(𝑎+ 𝑏)) ≤ (𝛼 + 4𝛿3𝑘)
(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛.
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Proof. Let 𝑆1, 𝑆2, 𝑆3 the super-sets of the vectors 𝑎, 𝑏, 𝑐 with respect to which the triplet (𝑎, 𝑏, 𝑐)

is an 𝛼-DLM. Set 𝑚 := |𝑆1| = |𝑆2|. Based on the definition of an 𝛼-DLM by expanding the

squared norm in the left hand side of (4.2) we have that ∀𝑖 ∈ 𝑆1, 𝑗 ∈ 𝑆2 it holds

𝑎2𝑖 ‖𝑋𝑖‖22 + 𝑏2𝑗‖𝑋𝑗‖22 + 2𝑎𝑖𝑏𝑗𝑋
𝑇
𝑖 𝑋𝑗 − 2 (𝑋𝑎+𝑋𝑏+𝑋𝑐)𝑇 (𝑎𝑖𝑋𝑖 + 𝑏𝑗𝑋𝑗)

is at leasy

−𝛼
(︂‖𝑎‖22

𝑚
+

‖𝑏‖22
𝑚

)︂
𝑛.

Summing over all 𝑖 ∈ 𝑆1, 𝑗 ∈ 𝑆2 we obtain

∑︁

𝑖∈𝑆1,𝑗∈𝑆2

[︁
𝑎2𝑖 ‖𝑋𝑖‖22 + 𝑏2𝑗‖𝑋𝑗‖22 + 2𝑎𝑖𝑏𝑗𝑋

𝑇
𝑖 𝑋𝑗 − 2 (𝑋𝑎+𝑋𝑏+𝑋𝑐)𝑇 (𝑎𝑖𝑋𝑖 + 𝑏𝑗𝑋𝑗)

]︁

is at least

−𝑚𝛼
(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛

which equivalently gives

𝑚
∑︁

𝑖∈𝑆1

𝑎2𝑖 ‖𝑋𝑖‖22 +𝑚
∑︁

𝑗∈𝑆2

𝑏2𝑗‖𝑋𝑗‖22 + 2(𝑋𝑎)𝑇 (𝑋𝑏)− 2𝑚 (𝑋𝑎+𝑋𝑏+𝑋𝑐)𝑇 (𝑋𝑎+𝑋𝑏)

is at least

−𝑚𝛼
(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛

which now after rearranging and multiplying with − 1
𝑚

implies that the quantity

‖𝑋 (𝑎+ 𝑏) ‖22 + 2(𝑋𝑐)𝑇 (𝑋(𝑎+ 𝑏)) + 2

(︂
1− 1

𝑚

)︂
(𝑋𝑎)𝑇 (𝑋𝑏)

⏟  ⏞  
𝑆

+

[︃
‖𝑋𝑎‖22 −

∑︁

𝑖∈𝑆1

𝑎2𝑖 ‖𝑋𝑖‖22

]︃
+

[︃
‖𝑋𝑏‖22 −

∑︁

𝑗∈𝑆2

𝑏2𝑗‖𝑋𝑗‖22

]︃

⏟  ⏞  
𝑇

is at most 𝛼 (‖𝑎‖22 + ‖𝑏‖22)𝑛. To finish the proof it suffices to establish that 𝑆, 𝑇 are both bounded

from below by −2𝛿3𝑘 (‖𝑎‖22 + ‖𝑏‖22)𝑛. We start with bounding 𝑆. The vectors 𝑎, 𝑏 have disjoint
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supports which sizes sum up to at most 3𝑘. In particular, the union of their supports is a common

super-support of them of size at most 3𝑘. Hence we can apply part (3) of Proposition 4.3.4 to

get

𝑆 = 2

(︂
1− 1

𝑚

)︂
(𝑋𝑎)𝑇 (𝑋𝑏) ≥ −2𝛿3𝑘

(︂
1− 1

𝑚

)︂(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛 ≥ −2𝛿3𝑘

(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛.

For 𝑇 it suffices to prove that
[︀
‖𝑋𝑎‖22 −

∑︀
𝑖∈𝑆1

𝑎2𝑖 ‖𝑋𝑖‖22
]︀
≥ −2𝛿3𝑘‖𝑎‖22𝑛 and since the same

will hold for 𝑏 by symmetry, by summing the inequalities we will be done. Note that as 𝑎 and all

the standard basis vectors are 3𝑘-sparse vectors by 3𝑘-RIP for 𝑋 we have ‖𝑋𝑎‖22 ≥ (1−𝛿3𝑘)‖𝑎‖22𝑛
and secondly ‖𝑋𝑖‖22 ≤ (1 + 𝛿3𝑘)𝑛, for all 𝑖 ∈ [𝑝]. Combining we obtain

[︃
‖𝑋𝑎‖22 −

∑︁

𝑖∈𝑆1

𝑎2𝑖 ‖𝑋𝑖‖22

]︃
≥
[︃
(1− 𝛿3𝑘)‖𝑎‖22𝑛− (1 + 𝛿3𝑘)

∑︁

𝑖∈𝑆1

𝑎2𝑖𝑛

]︃
= −2𝛿3𝑘‖𝑎‖22𝑛.

The proof is complete.

We now establish two properties for D.L.M. triplets.

Proposition 4.3.9. Let 𝑛, 𝑝, 𝑘 ∈ N with 𝑘 ≤ 1
3
𝑝. Suppose that 𝑋 ∈ R𝑛×𝑝 satisfies the 3𝑘-RIP

with restricted isometric constant 𝛿3𝑘 < 1
12

. Then there is no 1
4
-D.L.M. triplet (𝑎, 𝑏, 𝑐) with respect

to the matrix 𝑋 with ‖𝑎‖22 + ‖𝑏‖22 ≥ 1
4
‖𝑐‖22.

Proof. By Lemma 4.3.8 any 1
4
-D.L.M. triplet satisfies

‖𝑋 (𝑎+ 𝑏) ‖22 + 2(𝑋𝑐)𝑇 (𝑋(𝑎+ 𝑏)) ≤
(︂
1

4
+ 4𝛿3𝑘

)︂(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛.

But using the 3𝑘-R.I.P. for 𝑋 and that 𝑎, 𝑏, 𝑐 have disjoint supports with sizes summing up to

at most 3𝑘 we get the following two inequalities from Proposition (4.3.4);

∙ ‖𝑋(𝑎+ 𝑏)‖22 ≥ (1− 𝛿3𝑘) (‖𝑎+ 𝑏‖22)𝑛 = (1− 𝛿3𝑘) (‖𝑎‖22 + ‖𝑏‖22)𝑛, since 𝑎+ 𝑏 is 3𝑘-sparse and

𝑎, 𝑏 have disjoint supports.

∙ (𝑋𝑐)𝑇 (𝑋(𝑎+ 𝑏)) ≥ −𝛿3𝑘 (‖𝑐‖22 + ‖𝑎‖22 + ‖𝑏‖22), from Proposition 4.3.4 (3).

We obtain

(1− 𝛿3𝑘)
(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
− 2𝛿3𝑘

(︀
‖𝑐‖22 + ‖𝑎‖22 + ‖𝑏‖22

)︀
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is at most
(︀
1
4
+ 4𝛿3𝑘

)︀
(‖𝑎‖22 + ‖𝑏‖22) . But now, this inequality can be equivalently written as

(︂
3

4
− 7𝛿3𝑘

)︂(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
≤ 𝛿3𝑘‖𝑐‖22. (4.3)

Now we use that for 𝛿3𝑘 < 1
12

it holds 3
4
− 7𝛿3𝑘 > 2𝛿3𝑘. Using this in (4.3) we conclude that

√︀
‖𝑎‖22 + ‖𝑏‖22 < 1

2
‖𝑐‖2 and the proof of the proposition is complete.

The second property we want is the following.

Proposition 4.3.10. Let 𝑛, 𝑝, 𝑘 ∈ N with 𝑘 ≤ 1
3
𝑝. Suppose 𝑋 ∈ R𝑛×𝑝 has i.i.d. 𝑁(0, 1) entries.

There exists constants 𝑐1, 𝐶1 > 0 such that if 𝑛 ≥ 𝐶1𝑘 log 𝑝 then w.h.p. there is no 1
4
-D.L.M.

triplet (𝑎, 𝑏, 𝑐) with respect to the some sets ∅ ̸= 𝑆1, 𝑆2, 𝑆3 ⊂ [𝑝] and the matrix 𝑋 such that the

following conditions are satisfied.

(1) |𝑎|min := min{|𝑎𝑖| : 𝑎𝑖 ̸= 0} ≥ 1.

(2) 𝑆1 ∪ 𝑆3 = [𝑘] ∪ {𝑝}, 𝑝 ∈ 𝑆3 and 𝑆1 = Support(𝑎).

(3) ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22 ≤ 𝑐1min{ log 𝑝
log(log 𝑝)

, 𝑘}.

Proof. We first choose 𝐶1 > 0 large enough based on Theorem 4.3.3 so that 𝑛 ≥ 𝐶1𝑘 log 𝑝 implies

that 𝑋 satisfies the 3𝑘-RIP with 𝛿3𝑘 <
1
16

w.h.p. In particular all the probability calculations

below will be conditioned on this high-probability event.

We start with a lemma for bounding the probability that a specific triplet (𝑎, 𝑏, 𝑐) is an
1
2
-D.L.M. triplet with respect to 𝑋.

Lemma 4.3.11. There exists a 𝑐0 > 0 such that for any fixed triplet (𝑎, 𝑏, 𝑐) with 𝑎 ̸= 0,

P
(︂
(𝑎, 𝑏, 𝑐) is a

1

2
-D.L.M. triplet

)︂
≤ 2 exp

(︂
−𝑐0𝑛min{1, ‖𝑎‖

2
2 + ‖𝑏‖22
‖𝑐‖22

}
)︂
,

where for the case 𝑐 = 0 we abuse the notation by defining 1
0
:= +∞.

Proof. We prove only the case 𝑐 ̸= 0. The case 𝑐 = 0 is similar. Assume a fixed triplet (𝑎, 𝑏, 𝑐) is

an 1
2
-DLM. Using Claim 4.3.8 we have that it holds

‖𝑋 (𝑎+ 𝑏) ‖22 + 2(𝑋𝑐)𝑇 (𝑋(𝑎+ 𝑏)) ≤
(︂
1

2
+ 4𝛿3𝑘

)︂(︀
‖𝑎‖22 + ‖𝑏‖22

)︀
𝑛.
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We set 𝑋1 = 𝑋

(︂
𝑎+𝑏√

‖𝑎‖22+‖𝑏‖22

)︂
and 𝑊1 = 𝑋

(︁
𝑐

‖𝑐‖2

)︁
and notice that 𝑋1,𝑊1 have independent

𝑁(0, 1) entries because 𝑎, 𝑏, 𝑐 have disjoint supports. The last inequality can be expressed with

respect to 𝑋1,𝑊1 as,

‖𝑋1‖22 + 2
‖𝑐‖2√︀

‖𝑎‖22 + ‖𝑏‖22
𝑊1𝑋1 ≤

(︂
1

2
+ 4𝛿3𝑘

)︂
𝑛.

Now we introduce matrix notation. For 𝐼𝑛 the 𝑛× 𝑛 identity matrix we set

𝐴 :=

⎡
⎢⎣

𝐼𝑛
‖𝑐‖2√

‖𝑎‖22+‖𝑏‖22
𝐼𝑛

‖𝑐‖2√
‖𝑎‖22+‖𝑏‖22

𝐼𝑛 0𝑛

⎤
⎥⎦

and 𝑉 be the 2𝑛 vector obtained by concatenating 𝑋1,𝑊1, that is 𝑉 := (𝑋1,𝑊1)
𝑡. Then the last

inequality can be rewritten with respect to the matrix notation as

𝑉 𝑡𝐴𝑉 ≤
(︂
1

2
+ 4𝛿3𝑘

)︂
𝑛.

We now bound the probability of this inequality. First note that since 𝑉 is a vector with iid

standard Gaussian elements it holds that E[𝑉 𝑡𝐴𝑉 ] = trace (𝐴) = 𝑛. Hence,

P
(︂
𝑉 𝑡𝐴𝑉 ≤

(︂
1

2
+ 4𝛿3𝑘

)︂
𝑛

)︂

≤ P
(︂
|𝑉 𝑡𝐴𝑉 − E

[︀
𝑉 𝑡𝐴𝑉

]︀
| ≥ (

1

2
− 4𝛿3𝑘)𝑛

)︂
, using E

[︀
𝑉 𝑡𝐴𝑉

]︀
= 𝑛,

≤ P
(︁
|𝑉 𝑡𝐴𝑉 − E

[︀
𝑉 𝑡𝐴𝑉

]︀
| ≥ 𝑛

4

)︁
, using that 𝛿3𝑘 <

1

16
implies

1

2
− 4𝛿3𝑘 >

1

4
.

Now we apply Hanson-Wright inequality, so we need to estimate the Frobenious norm and the

spectral norm of the matrix 𝐴. We have

‖𝐴‖2𝐹 ≤ 3𝑛‖𝐴‖2∞ ≤ 3max{1, ‖𝑐‖22
‖𝑎‖22 + ‖𝑏‖22

}𝑛. (4.4)
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Now using that 𝐴 can be represented as the Kronecker product

𝐴 =

⎡
⎢⎣

1 ‖𝑐‖2√
‖𝑎‖22+‖𝑏‖22

‖𝑐‖2√
‖𝑎‖22+‖𝑏‖22

0

⎤
⎥⎦⊗ 𝐼𝑛

we obtain that the maximal eigenavalue of 𝐴 is the maximal eigenvalue of the 2× 2 first product

term of the Kronecker product. In particular from this it can be easily checked that,

‖𝐴‖ ≤ 2max{1,
√︃

‖𝑐‖22
‖𝑎‖22 + ‖𝑏‖22

}. (4.5)

Now from Hanson-Wright inequality we have for some constant 𝑑 > 0,

P
(︂
|𝑉 𝑡𝐴𝑉 − E

[︀
𝑉 𝑡𝐴𝑉

]︀
| ≥ 1

4
𝑛

)︂
≤ 2 exp

[︂
−𝑑min

(︂ 1
16
𝑛2

‖𝐴‖2F
,

1
4
𝑛

‖𝐴‖

)︂]︂
(4.6)

Using (4.4), (4.5) and noticing that max{1,
√︁

‖𝑐‖22
‖𝑎‖22+‖𝑏‖22

} ≤ max{1, ‖𝑐‖22
‖𝑎‖22+‖𝑏‖22

} we obtain that for

the constant 𝑐0 := 1
48
𝑑 it holds

𝑑min

(︂ 1
16
𝑛2

‖𝐴‖2F
,

1
4
𝑛

‖𝐴‖

)︂
≥ 𝑐0𝑛min{1, ‖𝑎‖

2
2 + ‖𝑏‖22
‖𝑐‖22

}

and therefore using (4.6) the proof is complete in this case.

Now we proceed with the proof of the proposition. We define the following sets parametrized

by 𝑟, 𝑐 > 0 and 𝛼 ∈ (0, 1)

𝐵𝑟,𝑐 := {(𝑎, 𝑏, 𝑐)
⃒⃒
𝑎, 𝑏, 𝑐 ∈ R𝑝, ‖𝑎‖0 + ‖𝑏‖0 + ‖𝑐‖0 ≤ 2𝑘 + 1, ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22 ≤ 𝑟2, |𝑎|min ≥ 𝑐}

and

𝐷𝛼,𝑟,𝑐 equal to

{(𝑎, 𝑏, 𝑐) ∈ 𝐵𝑟,𝑐

⃒⃒
(𝑎, 𝑏, 𝑐) is 𝛼-D.L.M. with correspondning super-supports satisfying

the assumption (2) of the Proposition 4.3.10 }
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We call a triplet of sets ∅ ≠ 𝑆1, 𝑆2, 𝑆3 ⊆ [𝑝] good if

∙ 𝑆1, 𝑆2, 𝑆3 are pair-wise disjoint

∙ |𝑆1| = |𝑆2|, 𝑝 ∈ 𝑆3 and 𝑆1 ∪ 𝑆3 = [𝑘] ∪ {𝑝}

For 𝛼 ∈ R and 𝑆 ⊆ R we define the set

𝑆 − 𝛼 := {𝑠− 𝛼|𝑠 ∈ 𝑆}.

For 𝑖 = 1, 2, 3 we set 𝑃𝑖 := {(𝑖 − 1)𝑝 + 1, (𝑖 − 1)𝑝 + 2, . . . , 𝑖𝑝}. Notice that the sets 𝑃1, 𝑃2, 𝑃3

partition [3𝑝]. We define the following family of subsets of [3𝑝],

𝒯 := {𝑇 ⊂ [3𝑝]| the triplet 𝑇 ∩ 𝑃1, 𝑇 ∩ 𝑃2 − 𝑝, 𝑇 ∩ 𝑃3 − 2𝑝 is good}.

It is easy to see that 𝒯 ⊂ {𝑇 ⊂ [3𝑝]||𝑇 | ≤ 2𝑘 + 1}. Furthermore for any 𝑇 ∈ 𝒯 we define

𝐵𝑟,𝑐(𝑇 ) := {(𝑎, 𝑏, 𝑐) ∈ 𝐵𝑟,𝑐

⃒⃒
Support ((𝑎, 𝑏, 𝑐)) ⊆ 𝑇, 𝑇 ∩ 𝑃1 = Support (𝑎)}

and

𝐷𝛼,𝑟,𝑐(𝑇 ) equal to

{(𝑎, 𝑏, 𝑐) ∈ 𝐵𝑟,𝑐(𝑇 )
⃒⃒
(𝑎, 𝑏, 𝑐) is 𝛼-D.L.M. with respect to 𝑇 ∩ 𝑃1, 𝑇 ∩ 𝑃2 − 𝑝, 𝑇 ∩ 𝑃3 − 2𝑝}.

We claim that

𝐷 1
4
,𝑟,1 =

⋃︁

𝑇∈𝒯
𝐷 1

4
,𝑟,1 (𝑇 ) . (4.7)

For the one direction, if 𝐴 = (𝑎, 𝑏, 𝑐) ∈ 𝐷 1
4
,𝑟,1 (𝑇 ) for some 𝑇 ∈ 𝒯 then (𝑎, 𝑏, 𝑐) is 𝛼-DLM with

corresponding super-supports 𝑇 ∩ 𝑃1, 𝑇 ∩ 𝑃2 − 𝑝, 𝑇 ∩ 𝑃3 − 2𝑝 which can be easily checked that

they satisfy assumption (2) of the Proposition 4.3.10 based on our assumptions. For the other

direction if 𝐴 ∈ 𝐷 1
4
,𝑟,1 is an 𝛼-DLM with respect to 𝑆1, 𝑆2, 𝑆3 satisfying the assumption (2) of

the Proposition, it can be easily verified that for the set 𝑇 = 𝑆1 ∪ (𝑆2 + 𝑝) ∪ (𝑆3 + 2𝑝) it holds

𝑇 ∈ 𝒯 and furthermore 𝐴 ∈ 𝐷 1
4
,𝑟,1 (𝑇 ).
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Now to prove the proposition it suffices to prove that there exists 𝑐1, 𝐶1 > 0 such that if

𝑛 ≥ 𝐶1𝑘 log 𝑝 and 𝑟 =
√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} then

lim
𝑘→+∞

P
(︁
𝐷 1

4
,𝑟,1 ̸= ∅

)︁
= 0.

Using the equation (4.7) for 𝛼 = 1
4

and 𝑐 = 1 and the union bound it suffices to be shown that

for some 𝑐1, 𝐶1 > 0 if 𝑛 ≥ 𝐶1𝑘 log 𝑝 and 𝑟 =
√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} then

lim
𝑘→+∞

∑︁

𝑇∈𝒯
P
(︁
𝐷 1

4
,𝑟,1 (𝑇 ) ̸= ∅

)︁
= 0.

We now state and prove the following packing lemma.

Lemma 4.3.12. There exists 𝐶2 > 0 such that for any 𝑟 > 0, 𝛿 ∈ (0, 1) and 𝑇 ∈ 𝒯 we can find

𝑄𝑟,1−𝛿(𝑇 ) ⊆ 𝐵𝑟,1−𝛿(𝑇 ) with the following two properties

∙ |𝑄𝑟,1−𝛿(𝑇 )| ≤ 𝐶2

(︀
12𝑟
𝛿

)︀2𝑘+1.

∙ For any 𝑝 ∈ 𝐵𝑟,1(𝑇 ) there exists 𝑞 ∈ 𝑄𝑟,1−𝛿(𝑇 ) with ‖𝑝− 𝑞‖2 ≤ 𝛿.

Proof. Fix 𝑟 > 0, 𝛿 ∈ (0, 1) and 𝑇 ∈ 𝒯 . Since 𝑇 ⊂ [3𝑝] and |𝑇 | ≤ 2𝑘 + 1 using standard packing

arguments (see for example [BDDW08]) there exists universal constant 𝐶2 > 0 and a set

𝑄′
𝑟,1−𝛿(𝑇 ) ⊂ 𝐵𝑟(𝑇 ) := {(𝑎, 𝑏, 𝑐)

⃒⃒
𝑎, 𝑏, 𝑐 ∈ R𝑝, Support ((𝑎, 𝑏, 𝑐)) ⊆ 𝑇, ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22 ≤ 𝑟2}

with the properties that |𝑄′
𝑟,1−𝛿(𝑇 )| ≤ 𝐶2

(︀
12𝑟
𝛿

)︀2𝑘+1 and that for any 𝑝 ∈ 𝐵𝑟(𝑇 ) there exists

𝑞 ∈ 𝑄′
𝑟,1−𝛿(𝑇 ) with ‖𝑝− 𝑞‖2 ≤ 𝛿.

To complete the proof we define

𝑄𝑟,1−𝛿 (𝑇 ) = 𝑄′
𝑟,1−𝛿(𝑇 ) ∩𝐵𝑟,1−𝛿(𝑇 ).

As 𝑄𝑟,1−𝛿(𝑇 ) ⊆ 𝑄′
𝑟,1−𝛿(𝑇 ) it also holds

|𝑄𝑟,1−𝛿(𝑇 )| ≤ |𝑄′
𝑟,1−𝛿(𝑇 )| ≤ 𝐶2

(︂
12𝑟

𝛿

)︂2𝑘+1

.
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For the other property let 𝑝 = (𝑎, 𝑏, 𝑐) ∈ 𝐵𝑟,1(𝑇 ). Since 𝐵𝑟,1(𝑇 ) ⊆ 𝐵𝑟(𝑇 ) there exist 𝑞 =

(𝑙,𝑚, 𝑛) ∈ 𝑄′
𝑟,1−𝛿(𝑇 ) with ‖𝑝− 𝑞‖2 ≤ 𝛿. We claim that 𝑞 ∈ 𝐵𝑟,1−𝛿(𝑇 ) which completes the proof.

It suffices to establish |𝑙|min ≥ 1−𝛿 and that Support (𝑙) = 𝑇∩𝑃1. We know ‖𝑎−𝑙‖∞ ≤ ‖𝑎−𝑙‖2 ≤
‖𝑝− 𝑞‖2 ≤ 𝛿. Therefore since for al 𝑖 ∈ 𝑇 ∩𝑃1, |𝑎𝑖| ≥ 1 we get that for all 𝑖 ∈ 𝑇 ∩𝑃1, |𝑙𝑖| ≥ 1− 𝛿.

Since 𝑇 ∩ 𝑃1 was assumed to be a super-support of 𝑙 this implies both Support (𝑙) = 𝑇 ∩ 𝑃1 and

|𝑙|min ≥ 1− 𝛿.

Claim 4.3.13. Consider the sets {𝑄𝑟,1−𝛿(𝑇 )}𝑇∈𝒯 from Lemma (4.3.12) defined for some 𝑟 > 0

and 0 < 𝛿 ≤ min{ 1
50𝑟
, 1
5
}. If 𝑋 satisfies the 3𝑘-RIP with 𝛿3𝑘 ∈ (0, 1) then for any 𝑇 ∈ 𝒯 such

that 𝐷 1
4
,𝑟,1(𝑇 ) ̸= ∅, we have 𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
(𝑇 ) ̸= ∅.

Proof. To prove the claim, we consider an element 𝐴 = (𝑎, 𝑏, 𝑐) ∈ 𝐷 1
4
,𝑟,1(𝑇 ). Note that since

𝐴 ∈ 𝐷 1
4
,𝑟,1(𝑇 ) ⊆ 𝐵𝑟,1(𝑇 ) ⊂ 𝐵𝑟,1−𝛿(𝑇 ) the definition of 𝑄𝑟,1−𝛿(𝑇 ) implies that for some 𝐿 =

(𝑙,𝑚, 𝑔) ∈ 𝑄𝑟,1−𝛿(𝑇 ) it holds ‖𝐴− 𝐿‖2 ≤ 𝛿. To complete the proof we show that 𝐿 ∈ 𝐷 1
2
,𝑟, 1

2
(𝑇 ).

Notice that from the definition of the sets 𝑄𝑟,1−𝛿(𝑇 ), 𝐷 1
4
,𝑟,1(𝑇 ), the vectors 𝑎, 𝑙 share the

set 𝑆1 = 𝑇 ∩ 𝑃1 as a common super-support and furthermore the vectors 𝑏,𝑚 share the set

𝑆2 = 𝑇 ∩ 𝑃2 as a common super-support. Since 𝐴 ∈ 𝐷 1
4
,𝑟,1(𝑇 ) we know firstly 𝑆1 = Support(𝑎),

secondly for any 𝑖 ∈ 𝑆1 = Support(𝑎), |𝑎𝑖| ≥ 1 and finally that for any 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2

‖ (𝑋𝑎− 𝑎𝑖𝑋𝑖 +𝑋𝑏− 𝑏𝑗𝑋𝑗) +𝑋𝑐‖22 ≥ ‖𝑋(𝑎+ 𝑏+ 𝑐)‖22 −
1

4

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛. (4.8)

To prove 𝐿 ∈ 𝐷 1
2
,𝑟, 1

2
(𝑇 ) it suffices to prove now firstly that 𝑆1 = Support(𝑙), secondly for any

𝑖 ∈ Support(𝑙), |𝑙𝑖| ≥ 1
2

and finally that for every 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2

‖ (𝑋𝑙 − 𝑙𝑖𝑋𝑖 +𝑋𝑚−𝑚𝑗𝑋𝑗) +𝑋𝑔‖22 ≥ ‖𝑋(𝑙 +𝑚+ 𝑔)‖22 −
1

2

(︂‖𝑙‖22
|𝑆1|

+
‖𝑚‖22
|𝑆2|

)︂
𝑛. (4.9)

We start with the first two properties. This is a similar calculation as in the proof of Lemma

4.3.12. We know ‖𝑎− 𝑙‖2 ≤ ‖𝐴− 𝐿‖2 ≤ 𝛿 < 1
2
. In particular, ‖𝑎− 𝑙‖∞ ≤ 1

2
. But we know that

𝑆1 = Support(𝑎) and |𝑎|min ≥ 1. These together imply that for all 𝑖 ∈ 𝑆1, |𝑙𝑖| ≥ 1
2
. Since 𝑆1 is

a super-support of 𝑙 we conclude that indeed 𝑆1 = Support(𝑙) and that for any 𝑖 ∈ Support(𝑙),

|𝑙𝑖| ≥ 1
2

as required. Now we prove the third property and use Proposition 4.3.4. By part (2) of
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this proposition we know that since 𝑋 satisfies the 3𝑘-RIP for some restricted isometric constant

𝛿3𝑘 < 1, any two vectors 𝑣, 𝑤 which share a common super-support of size at most 3𝑘 satisfy

‖𝑋𝑤‖22 + 4‖𝑣 − 𝑤‖2‖𝑤‖2𝑛+ 2‖𝑣 − 𝑤‖22𝑛 ≥ ‖𝑋𝑣‖2 ≥ ‖𝑋𝑤‖22 − 4‖𝑣 − 𝑤‖2‖𝑤‖2𝑛 (4.10)

For our convenience for the calculations that follow we set for all 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2, 𝐴𝑖,𝑗 :=

𝐴 − 𝑎𝑖𝑒𝑖 − 𝑏𝑗𝑒𝑗 and 𝐿𝑖,𝑗 := 𝐿 − 𝑙𝑖𝑒𝑖 − 𝑚𝑗𝑒𝑗, where by {𝑒𝑖}𝑖∈[3𝑝] we denote the standard basis

vectors of R3𝑝. In words for all 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2 we set 𝐴𝑖,𝑗 the vector 𝐴 after we set zero its 𝑖

and 𝑗 coordinates and similarly we define 𝐿𝑖,𝑗. Now fix 𝑖 ∈ 𝑆1, 𝑗 ∈ 𝑆2. Then we have by directly

applying (4.10) for the two pairs 𝑣 = 𝐿𝑖,𝑗 and 𝑤 = 𝐴𝑖,𝑗 and 𝑣 = 𝐿,𝑤 = 𝐴 that

‖𝑋(𝐴𝑖,𝑗)‖22 ≤ ‖𝑋(𝐿𝑖,𝑗)‖22 + 4‖𝐿𝑖,𝑗 − 𝐴𝑖,𝑗‖2‖𝐴𝑖,𝑗‖2𝑛+ 2‖𝐿𝑖,𝑗 − 𝐴𝑖,𝑗‖22𝑛

and

‖𝑋(𝐴)‖22 ≥ ‖𝑋(𝐿)‖22 − 4‖𝐴− 𝐿‖2‖𝐿‖2𝑛,

Hence ‖𝑋(𝐴𝑖,𝑗)‖22 − ‖𝑋(𝐴)‖22 is at most

‖𝑋(𝐿𝑖,𝑗)‖22 + 4‖𝐿𝑖,𝑗 − 𝐴𝑖,𝑗‖2‖𝐴𝑖,𝑗‖2𝑛+ 2‖𝐿𝑖,𝑗 − 𝐴𝑖,𝑗‖22𝑛− ‖𝑋(𝐿)‖22 + 4‖𝐴− 𝐿‖2‖𝐴‖2𝑛.

But using the easy observations

‖𝐴𝑖,𝑗 − 𝐿𝑖,𝑗‖2 ≤ ‖𝐴− 𝐿‖2 ≤ 𝛿

and

‖𝐴𝑖,𝑗‖2 ≤ ‖𝐴‖2 ≤ 𝑟

we get that the last quantity can be upper bounded by ‖𝑋𝐿𝑖,𝑗‖22−‖𝑋𝐿‖22+(8𝛿𝑟+2𝛿2)𝑛. Therefore

combining the last steps we have established

‖𝑋(𝐴𝑖,𝑗)‖22 − ‖𝑋(𝐴)‖22 ≤ ‖𝑋𝐿𝑖,𝑗‖22 − ‖𝑋𝐿‖22 + (8𝛿𝑟 + 2𝛿2)𝑛.
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But we know that by our assumptions ‖𝑋(𝐴𝑖,𝑗)‖22−‖𝑋(𝐴)‖22 ≥ −1
4

(︁
‖𝑎‖22
|𝑆1| +

‖𝑏‖22
|𝑆2|

)︁
𝑛. Therefore

‖𝑋𝐿𝑖,𝑗‖22 − ‖𝑋𝐿‖22 ≥ −1

4

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛− (8𝛿𝑟 + 2𝛿2)𝑛.

So to prove (4.9) it suffices to be proven that

−1

4

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛− (8𝛿𝑟 + 2𝛿2)𝑛 ≥ −1

2

(︂‖𝑙‖22
|𝑆1|

+
‖𝑚‖22
|𝑆2|

)︂
𝑛. (4.11)

Note that ‖𝐴‖2 ≤ 𝑟, ‖𝐿‖2 ≤ 𝑟, ‖𝐴− 𝐿‖2 ≤ 𝛿 implies ‖𝑎‖22 − ‖𝑙‖22 ≤ 2𝛿𝑟 and ‖𝑏‖22 − ‖𝑚‖22 ≤ 2𝛿𝑟.

Hence from the definition of 𝐴,𝐿 and since |𝑆1| = |𝑆2| ≥ 1 it holds,

1

2

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛− 1

2

(︂‖𝑙‖22
|𝑆1|

+
‖𝑚‖22
|𝑆2|

)︂
𝑛 ≤ 2𝛿𝑟𝑛.

In particular it holds

−1

2

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛 ≥ −1

2

(︂‖𝑙‖22
|𝑆1|

+
‖𝑚‖22
|𝑆2|

)︂
𝑛− 2𝛿𝑟𝑛.

Hence using the last inequality we can immediately derive (4.11) provided that

1

4

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛 ≥ 2𝛿𝑟𝑛+ (8𝛿𝑟 + 2𝛿2)𝑛 = (10𝛿𝑟 + 2𝛿2)𝑛.

But now since 𝑎2𝑖 ≥ 1 for all 𝑖 ∈ 𝑆1,
‖𝑎‖22
|𝑆1| ≥ 1 and therefore

1

4

(︂‖𝑎‖22
|𝑆1|

+
‖𝑏‖22
|𝑆2|

)︂
𝑛 ≥ 1

4
𝑛.

so it suffices that 2𝛿2 + 10𝛿𝑟 ≤ 1
4
. It can be easily checked to be true if 𝛿 ≤ min{ 1

50𝑟
, 1
5
}. The

proof of the claim is complete.

To prove the proposition we need to show that for some 𝑐1, 𝐶1 > 0 if 𝑛 ≥ 𝐶1𝑘 log 𝑝, 𝑟 =√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} and 𝛿 = 1

60𝑟
then for the appropriately defined sets {𝑄𝑟,1−𝛿(𝑇 )}𝑇∈𝒯 it holds

lim
𝑘→+∞

∑︁

𝑇∈𝒯
P
(︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
(𝑇 )| ≥ 1

)︁
= 0.
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But by Markov inequality for all such 𝑇 ∈ 𝒯 ,

P
(︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
| ≥ 1

)︁
≤ E

[︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
|
]︁
.

Furthermore for all 𝑇 ∈ 𝒯 , 1 ≤ |𝑇 ∩ 𝑃2| ≤ 𝑘. By the Markov inequality and summing over the

possible values of |𝑇 ∩𝑃2| for 𝑇 ∈ 𝒯 , it suffices to show that for some 𝑐1, 𝐶1 > 0 if 𝑛 ≥ 𝐶1𝑘 log 𝑝

and 𝑟 =
√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} then,

lim
𝑘→+∞

𝑘∑︁

𝑚=1

∑︁

𝑇∈𝒯 ,|𝑇∩𝑃2|=𝑚

E
(︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
(𝑇 )|

)︁
= 0 (4.12)

Fix 𝑚 ∈ [𝑘] and a set 𝑇 ∈ 𝒯 with |𝑇 ∩ 𝑃2| = 𝑚. Then for any 𝐴 = (𝑎, 𝑏, 𝑐) ∈ 𝑄𝑟,1−𝛿(𝑇 ) ∩
𝐷 1

2
,𝑟, 1

2
(𝑇 ), since 𝐷 1

2
,𝑟, 1

2
(𝑇 ) ⊆ 𝐵𝑟, 1

2
(𝑇 ), we have |𝑎|min ≥ 1

2
and ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22 ≤ 𝑟2. Based

on the definition of 𝐷 1
2
,𝑟, 1

2
(𝑇 ), we also have |Support(𝑎)| = |𝑆1| = |𝑆2| = |𝑇 ∩ 𝑃2| = 𝑚. Hence,

‖𝑎‖22 ≥ |𝑎|2min𝑚 ≥ 1
4
𝑚 and ‖𝑐‖22 ≤ ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22 ≤ 𝑟2. By Lemma 4.3.11 we know that

for any triplet 𝐴 = (𝑎, 𝑏, 𝑐), P
(︁
𝐴 ∈ 𝐷 1

2
,𝑟, 1

2
(𝑇 )
)︁
≤ exp

(︁
−𝑐0𝑛min{1, ‖𝑎‖22+‖𝑏‖22

‖𝑐‖22
}
)︁
. Hence using the

above inequalities we can conclude that for any such 𝐴 = (𝑎, 𝑏, 𝑐) ∈ 𝑄𝑟,1−𝛿(𝑇 ) it holds

P
(︁
𝐴 ∈ 𝐷 1

2
,𝑟, 1

2
(𝑇 )
)︁
≤ 2 exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂

(4.13)

Linearity of expectation, the above bound and the cardinality assumption on 𝑄𝑟,1−𝛿(𝑇 ) imply

E
[︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
(𝑇 )|

]︁
≤ 2|𝑄𝑟,1−𝛿(𝑇 )| exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂

(4.14)

≤ 2𝐶2

(︂
12𝑟

𝛿

)︂2𝑘+1

exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂
. (4.15)

We now count the number of possible 𝑇 ∈ 𝒯 with |𝑇 ∩ 𝑃2| = 𝑚. Recall that any 𝑇 ⊆ [3𝑝]

satisfies 𝑇 ∈ 𝒯 if and only if the triplet of sets 𝑇 ∩ 𝑃1, 𝑇 ∩ 𝑃2 − 𝑝, 𝑇 ∩ 𝑃3 − 2𝑝 is a good triplet.

That is if and only if

(1) 𝑇∩𝑃1, 𝑇∩𝑃2−𝑝, 𝑇∩𝑃3−2𝑝 are pairwise disjoint sets and |𝑇∩𝑃1| = |𝑇∩𝑃2−𝑝| = |𝑇∩𝑃2| = 𝑚
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(2) 𝑝 ∈ 𝑇 ∩ 𝑃3 − 2𝑝

(3) (𝑇 ∩ 𝑃1) ∪ (𝑇 ∩ 𝑃3 − 2𝑝) = [𝑘] ∪ {𝑝}

Since a set 𝑇 ⊆ [3𝑝] is completely characterized by the intersections with 𝑃1, 𝑃2, 𝑃3, it suffices

to count the number of triplets of sets 𝑇 ∩ 𝑃𝑖, 𝑖 = 1, 2, 3 satisfying the three above conditions.

Now conditions (1),(3) imply that 𝑇 ∩ 𝑃3 is completely characterized by 𝑇 ∩ 𝑃1. Furthermore

by checking conditions (1), (2), (3) we know that 𝑇 ∩ 𝑃1 is an arbitrary subset of [𝑘] of size 𝑚.

Hence we have
(︀
𝑘
𝑚

)︀
choices for both the sets 𝑇 ∩ 𝑃1 and 𝑇 ∩ 𝑃3. Finally for the set 𝑇 ∩ 𝑃2 we

only have that it needs to satisfy |𝑇 ∩ 𝑃2| = 𝑚. Hence for 𝑇 ∩ 𝑃2 we have
(︀
𝑝
𝑚

)︀
choices, giving in

total that the number of sets 𝑇 ∈ 𝒯 with |𝑇 ∩ 𝑃2| = 𝑚 equals to
(︀
𝑘
𝑚

)︀(︀
𝑝
𝑚

)︀
. Hence,

∑︁

𝑇∈𝒯 ,|𝑇∩𝑃2|=𝑚

E
(︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
(𝑇 )|

)︁
≤ 2

(︂
𝑘

𝑚

)︂(︂
𝑝

𝑚

)︂
𝐶2

(︂
12𝑟

𝛿

)︂2𝑘+1

exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂
.

Summing over all 𝑚 = 1, 2, . . . , 𝑘 and using the bounds
(︀
𝑘
𝑚

)︀
≤ 2𝑘,

(︀
𝑝
𝑚

)︀
≤ 𝑝𝑚 we conclude that

𝑘∑︁

𝑚=1

∑︁

𝑇∈𝒯 ,|𝑇∩𝑃 |=𝑚

E
(︁
|𝑄𝑟,1−𝛿(𝑇 ) ∩𝐷 1

2
,𝑟, 1

2
(𝑇 )|

)︁

is at most

2𝐶3𝑘2
𝑘 max
𝑚=1,...,𝑘

[︃
𝑝𝑚
(︂
12𝑟

𝛿

)︂2𝑘+1

exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂]︃

.

Therefore it suffices to show that for some 𝑐1, 𝐶1 > 0 if 𝑛 ≥ 𝐶1𝑘 log 𝑝, 𝑟 =
√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘}

and 𝛿 = 1
60𝑟

then

lim
𝑘→∞

𝑘2𝑘 max
𝑚=1,...,𝑘

[︃
𝑝𝑚
(︂
12𝑟

𝛿

)︂2𝑘+1

exp

(︂
−1

4
𝑐0𝑛min{1, 𝑚

𝑟2
}
)︂]︃

= 0.

Since this is an increasing quantity in 𝑛 and in 1
𝛿

we plug in 𝑛 = 4
𝑐0
𝐶1𝑘 log 𝑝 and 𝛿 = 1

60𝑟
(since

𝑟 → +∞) and after taking logarithms it suffices to be proven that for 𝐶1 large enough but

constant and 𝑐1 > 0 small enough but constant, if 𝑟 =
√︁
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} then

max
𝑚=1,...,𝑘

[︁
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝min{1, 𝑚

𝑟2
}
]︁
+ 𝑘 log 2 + log 𝑘 → −∞.
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We consider the two cases: when 𝑚 ≤ 𝑟2 and when 𝑚 ≥ 𝑟2. Suppose 𝑚 ≥ 𝑟2, that is

min{1, 𝑚
𝑟2
} = 1. We choose 𝑐1 small enough so that 1000𝑟2 ≤ 𝑘 ≤ 𝑝 and therefore

max
𝑘≥𝑚≥𝑟2

[︁
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝min{1, 𝑚

𝑟2
}
]︁
+ 𝑘 log 2 + log 𝑘

= max
𝑘≥𝑚≥𝑟2

[︀
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝

]︀
+ 𝑘 log 2 + log 𝑘

≤ −(𝐶1 − 4)𝑘 log 𝑝+ 𝑘 log 2 + log 𝑘, since 𝑚 log 𝑝+ (2𝑘 + 1) log
(︀
1000𝑟2

)︀
≤ 4𝑘 log 𝑝,

≤ −(𝐶1 − 5)𝑘 log 𝑝,

which if 𝐶1 > 6 clearly diverges to −∞ as 𝑘 → +∞.

Now suppose 𝑚 ≤ 𝑟2, that is when min{1, 𝑚
𝑟2
} = 𝑚

𝑟2
. We have

max
1≤𝑚≤𝑟2

[︁
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝min{1, 𝑚

𝑟2
}
]︁
+ 𝑘 log 2 + log 𝑘

= max
1≤𝑚≤𝑟2

[︁
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝

𝑚

𝑟2

]︁
+ 𝑘 log 2 + log 𝑘.

We write

𝑚 log 𝑝+ (2𝑘 + 1) log
(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝

𝑚

𝑟2

= 𝑚 log 𝑝− 𝐶1

2
𝑘 log 𝑝 · 𝑚

𝑟2
+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1

2
𝑘 log 𝑝 · 𝑚

𝑟2
.

But now for 𝑐1 < 1 we have 𝑟2 ≤ 𝑘 and therefore

𝑚 log 𝑝− 𝐶1

2
𝑘 log 𝑝 · 1

4

𝑚

𝑟2
≤ (1− 𝐶1

2
)𝑚 log 𝑝 ≤ −2 log 𝑝 (4.16)

for 𝐶1 ≥ 6. Now we will bound the second summand. Again assuming 𝐶1 > 6 and using that

𝑚 ≥ 1 we have

(2𝑘 + 1) log
(︀
1000𝑟2

)︀
− 𝐶1

2
𝑘 log 𝑝 · 𝑚

𝑟2
≤ 3𝑘

(︂
log
(︀
1000𝑟2

)︀
− 1

4𝑟2
log 𝑝

)︂
(4.17)

Now we claim that the right hand side of the above inequalty is at most −3𝑘, given 𝑐1 small

enough, as 𝑘 → +∞. It suffices to prove that if 𝑟 ≤
√︁
𝑐1

log 𝑝
log log 𝑝

for some 𝑐1 > 0 small enough
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then log (1000𝑟2)− 1
4𝑟2

log 𝑝 ≤ −1 or equivalently 𝑟2 log (1000𝑟2) + 𝑟2 ≤ 1
4
log 𝑝. But notice that

the left hand side of the last inequality is increasing in 𝑟 and it can be easily checked that if

𝑟2 = 1
5

log 𝑝
log log 𝑝

then
𝑟2 log(1000𝑟2)+𝑟2

log 𝑝
tends in the limit (as 𝑝 grows to infinity) to 1

5
which is less than

1
4
. Therefore if 𝑐1 < 1

5
the inequality becomes true for large enough 𝑝 for this value of 𝑟 and my

monotonicity for all smaller values of 𝑟 as well. Now combining (4.16) and (4.17) we conclude

that for small enough 𝑐1 > 0 and large enough 𝐶1 > 0 that

max
1≤𝑚≤4𝑟2

[︂
𝑚 log 𝑝+ (2𝑘 + 1) log

(︀
1000𝑟2

)︀
− 𝐶1𝑘 log 𝑝

1

4

𝑚

𝑟2

]︂
+ 𝑘 log 2 + log 𝑘

≤ −2 log 𝑝− 3𝑘 + 𝑘 log 2 + log 𝑘

≤ −(3− 2 log 2)𝑘 + log 𝑘 → −∞, as 𝑛, 𝑝, 𝑘 → +∞

which completes the proof.

4.3.3 Proof of Theorems 4.2.2, 4.2.5 and 4.2.6

We first prove Theorem 4.2.6 and then we show how it implies Theorems 4.2.2 and 4.2.5.

Proof of Theorem 4.2.6. Let 𝑋 ′ be an 𝑛× (𝑝+ 1) matrix such that for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝] it holds

𝑋 ′
𝑖,𝑗 = 𝑋𝑖,𝑗 and for 𝑖 ∈ [𝑛], 𝑗 = 𝑝 + 1, 𝑋 ′

𝑖,𝑝+1 := 1
𝜎
𝑊𝑖. In words, we create 𝑋 ′ by augmenting 𝑋

with the rescaled 1
𝜎
𝑊 as an extra column. Note that 𝑋 ′ has iid standard Gaussian entries and

furthermore 𝑌 = 𝑋𝛽* +𝑊 = 𝑋 ′

⎡
⎣𝛽

*

𝜎

⎤
⎦ .

Notice that the performance of our algorithm is invariant with respect to rescaling of the

quantities 𝑌, 𝛽*, 𝜎, 𝛽0 by a scalar. In particular by rescaling 𝑌 = 𝑋𝛽* + 𝑊 with 1
|𝛽*|min

we

can replace 𝑌 by 𝑌
|𝛽*|min

, 𝛽* with 𝛽*

|𝛽*|min
, 𝜎2 by 𝜎2

|𝛽*|2min
and finally 𝛽0 by 𝛽0

|𝛽*|2min
and thus we may

assume for our proof that |𝛽*|min = 1. Notice that in this case our desired upper bound on the

running time remains 4𝑘 ‖𝑌−𝑋𝛽0‖22
𝜎2𝑛

and our assumptions on the variance of the noise is now simply

𝜎2 ≤ 𝑐min{ log 𝑝
log log 𝑝

, 𝑘} for some 𝑐 > 0.

Recall that the desired output of the algorithm are vectors 𝛽 satisfying the following termi-

nation conditions.
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Termination Conditions:

(TC1) Support
(︁
𝛽
)︁
= Support (𝛽*) and,

(TC2) ‖𝛽 − 𝛽*‖2 ≤ 𝜎.

We start with the following deterministic claim.

Claim 4.3.14. Assume that the algorithm LSA has the following property. For any 𝑘-sparse 𝛽

which violates at least one of (TC1),(TC2) we have ‖𝑌 − 𝑋𝛽′‖22 ≤ ‖𝑌 − 𝑋𝛽‖22 − 𝜎2

4𝑘
𝑛, where

𝛽′ is obtained from 𝛽 in one iteration of the LSA. Then the algorithm LSA terminates for any

𝑘-sparse vector 𝛽0 as input in at most 4𝑘 ‖𝑌−𝑋𝛽0‖22
𝜎2𝑛

iterations with an output vector 𝛽 satisfying

both conditions (𝑇𝐶1), (𝑇𝐶2).

Proof. The property clearly implies that for the algorithm to terminate it needs to satisfy both

conditions (𝑇𝐶1), (𝑇𝐶2). Hence we need to bound only the termination time appropriately. But

since at every iteration that the algorithm does not terminate the quantity ‖𝑌 −𝑋𝛽‖22 decreases

by at least 𝜎2

4𝑘
𝑛, the result follows.

For any vector 𝑣 ∈ R𝑝 and ∅ ̸= 𝐴 ⊆ [𝑝] we denote by 𝑣𝐴 ∈ R𝑝 the 𝑝-dimensional real vector

such that (𝑣𝐴)𝑖 = 𝑣𝑖 for 𝑖 ∈ 𝐴 and (𝑣𝐴)𝑖 = 0 for 𝑖 ̸∈ 𝐴. Furthermore we set 𝑣∅ = 0𝑝×1 for any

vector 𝑣. Without the loss of generality from now on we assume Support (𝛽*) = [𝑘]. Following

the Claim 4.3.14 and our discussion, in order to prove Theorem 4.2.6 it suffices to prove that there

exists 𝑐, 𝐶 > 0 such that w.h.p. there is no 𝑘-sparse 𝛽 that violates at least one of (TC1),(TC2)

and furthermore satisfies that ‖𝑌 −𝑋𝛽′‖22 ≥ ‖𝑌 −𝑋𝛽‖22 − 𝜎2

4𝑘
𝑛, where 𝛽′ is obtained from 𝛽 in

one iteration of the LSA.

Suppose the existence of such a 𝛽. We first choose 𝐶 > 0 large enough so that 𝑋 ′ satisfies

the 3𝑘-RIP with 𝛿3𝑘 < 1
12

. The existence of this 𝐶 > 0 is guaranteed by Theorem 4.3.3. Denote

by 𝑇 a super support of 𝛽, that satisfies |𝑇 | = 𝑘 and 𝑇 ∩ [𝑘] = Support (𝛽)∩ [𝑘]. The existence of

𝑇 is guaranteed as |Support (𝛽) | ≤ 𝑘 and 𝑘 ≤ 𝑝
3
. Note that in particular that (TC1) is satisfied

if and only iff Support (𝛽) = [𝑘] if and only if 𝑇 = [𝑘]. We know that for all 𝑖 ∈ [𝑝], 𝑗 ∈ 𝑇 and

𝑞 ∈ R,

‖𝑌 −𝑋𝛽 + 𝛽𝑗𝑋𝑗 − 𝑞𝑋𝑖‖22 ≥ ‖𝑌 −𝑋𝛽‖2 −
𝜎2

4𝑘
𝑛
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or equivalently,

‖𝑋𝛽* +𝑊 −𝑋𝛽 + 𝛽𝑗𝑋𝑗 − 𝑞𝑋𝑖‖22 ≥ ‖𝑋𝛽* +𝑊 −𝑋𝛽‖2 −
𝜎2

4𝑘
𝑛,∀𝑖 ∈ [𝑝], 𝑗 ∈ 𝑇, 𝑞 ∈ R. (4.18)

Consider the triplets (𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑔) ∈ R𝑝+1 × R𝑝+1 × R𝑝+1, where

𝑎 :=

⎡
⎣𝛽

*
[𝑘]∖𝑇

0

⎤
⎦ , 𝑏 :=

⎡
⎣−𝛽𝑇∖[𝑘]

0

⎤
⎦ , 𝑐 :=

⎡
⎣(𝛽

* − 𝛽)[𝑘]∩𝑇

𝜎

⎤
⎦

and

𝑑 :=

⎡
⎣(𝛽

* − 𝛽)[𝑘]∩𝑇

0

⎤
⎦ , 𝑓 :=

⎡
⎣0𝑝×1

0

⎤
⎦ , 𝑔 :=

⎡
⎣(𝛽

*)[𝑘]∖𝑇 − (𝛽)𝑇∖[𝑘]

𝜎

⎤
⎦ .

Lemma 4.3.15. Assume that ‖(𝛽− 𝛽*)[𝑘]∩𝑇‖22 ≥ 𝜎2. Then the inequalities (4.18) imply that the

triplet (𝑑, 𝑓, 𝑔) is 1
4
-DLM with respect to the matrix 𝑋 ′.

Proof. We use the relation (4.18) and we choose 𝑖 = 𝑗 ∈ [𝑘] ∩ 𝑇 , and 𝑞 = 𝛽*
𝑖 to get that

‖𝑋𝛽* +𝑊 −𝑋𝛽 + (𝛽𝑖 − 𝛽*
𝑖 )𝑋𝑖‖22 ≥ ‖𝑋𝛽* +𝑊 −𝑋𝛽‖2 −

𝜎2

4𝑘
𝑛, for all 𝑖 ∈ [𝑘] ∩ 𝑇.

But now notice that with respect to 𝑋 ′ ∈ R𝑛×(𝑝+1) and the vectors 𝑑, 𝑓, 𝑔 defined above this

condition can be written as

‖𝑋 ′𝑑+𝑋 ′𝑓 +𝑋 ′𝑔 − 𝑑𝑖𝑋
′
𝑖‖22 ≥ ‖𝑋 ′ (𝑑+ 𝑓 + 𝑔) ‖22 −

𝜎2

4𝑘
𝑛, for all 𝑖 ∈ [𝑘] ∩ 𝑇. (4.19)

But based on our assumptions we have

‖𝑑‖22 + ‖𝑓‖22
|[𝑘] ∩ 𝑇 | =

‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22
|[𝑘] ∩ 𝑇 | ≥ 𝜎2

|[𝑘] ∩ 𝑇 | ≥
𝜎2

𝑘
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which combined with the inequality above gives,

‖ (𝑋 ′𝑑− 𝑑𝑖𝑋
′
𝑖) +𝑋 ′𝑓 +𝑋 ′𝑔‖22 ≥ ‖𝑋 ′𝑑+𝑋 ′𝑓 +𝑋 ′𝑔‖22 −

1

4

‖𝑑‖22 + ‖𝑓‖22
|[𝑘] ∩ 𝑇 | 𝑛, for all 𝑖 ∈ [𝑘] ∩ 𝑇,

(4.20)

which by definition since 𝑓 = 0 says that (𝑑, 𝑓, 𝑔) is a 1
4
-DLM triplet with respect to [𝑘] ∩ 𝑇 , 𝑈

and Support(𝑔), where 𝑈 is an arbitrary set of cardinality |[𝑘]∩ 𝑇 | which is disjoint from [𝑘]∩ 𝑇
and Support(𝑔).

Recall that 𝛽 does not satisfy at least one of (TC1) and (TC2). We now consider different

cases with respect to that.

Case 1: 𝑇 = [𝑘] but ‖𝛽 − 𝛽*‖22 > 𝜎2.

In that case ‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22 ≥ 𝜎2, because 𝑇 = [𝑘]. In particular, from Claim 4.3.15 we

know that (𝑑, 𝑓, 𝑔) is a 1
4
-DLM triplet with respect to the matrix 𝑋 ′. From Lemma 4.3.9 since

we assume that 𝑋 ′ satisfies the 3𝑘-RIP with 𝛿3𝑘 <
1
12

w.h.p. we know that for (𝑑, 𝑓, 𝑔) to be a
1
4
-DLM triplet it needs to satisfy

‖𝑑‖22 + ‖𝑓‖22 <
1

4
‖𝑔‖22, w.h.p.

which equivalently means

‖ (𝛽 − 𝛽*)[𝑘]∩𝑇 ‖22 <
1

4

(︀
‖𝛽*

[𝑘]∖𝑇‖22 + ‖𝛽𝑇∖[𝑘]‖22 + 𝜎2
)︀

w.h.p.

or equivalently as 𝑇 = [𝑘]

‖𝛽 − 𝛽*‖22 <
𝜎2

4
w.h.p.

This is a contradiction with our assumption on 𝛽 that ‖𝛽 − 𝛽*‖22 > 𝜎2. Therefore indeed this

case leads w.h.p. to a contradiction and the proof in this case is complete.

Case 2: 𝑇 ̸= [𝑘].

We start by proving that in this case if we choose 𝑐 < 1 then the inequalities (4.18) imply

deterministically that (𝑎, 𝑏, 𝑐) is an 1
4
-DLM triplet with respect to [𝑘] ∖ 𝑇 , 𝑇 ∖ [𝑘] and ([𝑘] ∩ 𝑇 )∪
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{𝑝+ 1} and the matrix 𝑋 ′. For 𝑖 ∈ [𝑘] ∖ 𝑇 , 𝑗 ∈ 𝑇 ∖ [𝑘] and 𝑞 = 𝛽*
𝑗 (4.18) implies

‖𝑋𝛽* +𝑊 −𝑋𝛽 + 𝛽𝑗𝑋𝑗 − 𝛽*
𝑖𝑋𝑖‖22 ≥ ‖𝑋𝛽* +𝑊 −𝑋𝛽‖2 −

𝜎2

4𝑘
𝑛, for all 𝑖 ∈ [𝑘] ∖ 𝑇, 𝑗 ∈ 𝑇 ∖ [𝑘].

But now notice that with respect to 𝑋 ′ ∈ R𝑛×(𝑝+1), and the vectors 𝑎, 𝑏, 𝑐 defined above, this

condition can be written as

‖𝑋 ′𝑎+𝑋 ′𝑏+𝑋 ′𝑐− 𝑎𝑖𝑋
′
𝑖 − 𝑏𝑗𝑋

′
𝑗‖22 ≥ ‖𝑋 ′ (𝑎+ 𝑏+ 𝑐) ‖22 −

𝜎2𝑛

4𝑘
, (4.21)

for all 𝑖 ∈ [𝑘] ∖ 𝑇, 𝑗 ∈ 𝑇 ∖ [𝑘] (4.22)

Furthermore since the non-zero elements of 𝑎 are non-zero elements of 𝛽* we know |𝑎|min ≥ 1.

In particular for all 𝑖 ∈ [𝑘] ∖ 𝑇 it holds 𝑎2𝑖 ≥ 1 and therefore for 𝑚 = |[𝑘] ∖ 𝑇 | it holds ‖𝑎‖22+‖𝑏‖22
𝑚

≥
|𝑎|min ≥ 1. Therefore the inequality above implies

‖𝑋 ′𝑎+𝑋 ′𝑏+𝑋 ′𝑐− 𝑎𝑖𝑋
′
𝑖 − 𝑏𝑗𝑋

′
𝑗‖22 ≥ ‖𝑋 ′𝑎+𝑋 ′𝑏+𝑋 ′𝑐‖22 −

𝜎2𝑛

4𝑘

(︂‖𝑎‖22 + ‖𝑏‖22
𝑚

)︂
, (4.23)

for all 𝑖 ∈ [𝑘] ∖ 𝑇, 𝑗 ∈ 𝑇 ∖ [𝑘] (4.24)

Finally, since we are assuming 𝑐 < 1 we have 𝜎2 ≤ 𝑘 and therefore

‖ (𝑋 ′𝑎− 𝑎𝑖𝑋
′
𝑖) +

(︀
𝑋 ′𝑏− 𝑏𝑗𝑋

′
𝑗

)︀
+𝑋 ′𝑐‖22 ≥ ‖𝑋 ′𝑎+𝑋 ′𝑏+𝑋 ′𝑐‖22 −

𝑛

4

(︂‖𝑎‖22 + ‖𝑏‖22
𝑚

)︂
, (4.25)

for all 𝑖 ∈ [𝑘] ∖ 𝑇, 𝑗 ∈ 𝑇 ∖ [𝑘] (4.26)

which since 𝑚 = 𝑘 − |[𝑘] ∩ 𝑇 | = |[𝑘] ∖ 𝑇 | = |𝑇 ∖ [𝑘]| is exactly the property that (𝑎, 𝑏, 𝑐) is
1
4
-DLM with respect to the sets [𝑘] ∖ 𝑇 , 𝑇 ∖ [𝑘] and ([𝑘] ∩ 𝑇 )∩ {𝑝+ 1} and the matrix 𝑋 ′. Since

we assume that 𝑋 ′ satisfies the 3𝑘-RIP with 𝛿3𝑘 <
1
12

we conclude from Proposition 4.3.9 that

‖𝑎‖22 + ‖𝑏‖22 ≤ 1
4
‖𝑐‖22 or equivalently,

‖𝛽*
[𝑘]∖𝑇‖22 + ‖𝛽𝑇∖[𝑘]‖22 ≤

1

4

(︀
‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22 + 𝜎2

)︀
. (4.27)

Now we apply Proposition 4.3.10 for the 1
4
-DLM triplet (𝑎, 𝑏, 𝑐) with respect to 𝑆1 := [𝑘] ∖ 𝑇 ,

𝑆2 := 𝑇 ∖ [𝑘] and 𝑆3 := ([𝑘] ∩ 𝑇 ) ∪ {𝑝 + 1}. Let 𝑐1, 𝐶1 > 0 the corresponding constants of the
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proposition. We choose our 𝐶 to satisfy 𝐶 > 𝐶1 so that the hypothesis of the Proposition 4.3.10

applies for any 1
4
-DLM triplet with respect to our matrix 𝑋 ′. In particular since (𝑎, 𝑏, 𝑐) is a

1
4
-DLM triplet we know that it should not satisfy one of the conditions w.h.p. We have that

|𝑎|min ≥ 1 and it is easy to check that 𝑆1 ∪ 𝑆3 = [𝑘] ∪ {𝑝+ 1}, 𝑝+ 1 ∈ 𝑆3 and 𝑆1 = Support(𝑎).

Therefore from the conclusion of Proposition 4.3.10 it must be true that the triplet (𝑎, 𝑏, 𝑐) must

violate the third condition, that is

𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} ≤ ‖𝑎‖22 + ‖𝑏‖22 + ‖𝑐‖22, w.h.p.

or equivalently

𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} ≤ ‖𝛽*

[𝑘]∖𝑇‖22 + ‖𝛽𝑇∖[𝑘]‖22 + ‖(𝛽 − 𝛽*)𝑇∩[𝑘]‖22 + 𝜎2,

Applying inequality (4.27) with the last inequality we conclude

𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} ≤ 1

4
(‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22 + 𝜎2) + ‖(𝛽 − 𝛽*)𝑇∩[𝑘]‖22 + 𝜎2,

or equivalently

4

5
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} − 𝜎2 ≤ ‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22,

Choosing our constant 𝑐 > 0 to satisfy 𝑐 < 2
5
𝑐1, we can assume 2𝜎2 < 4

5
𝑐1min{ log 𝑝

log log 𝑝
, 𝑘} and

therefore the last inequality implies

𝜎2 ≤ ‖ (𝛽 − 𝛽*)[𝑘]∩𝑇 ‖22, (4.28)

This by Lemma 4.3.15 implies that (𝑑, 𝑓, 𝑔) is also an 1
4
-DLM triplet. In particular from

Proposition 4.3.9 we have

‖𝑑‖22 + ‖𝑓‖22 <
1

4
‖𝑔‖22,

which equivalently means

‖ (𝛽 − 𝛽*)[𝑘]∩𝑇 ‖22 <
1

4

(︀
‖𝛽*

[𝑘]∖𝑇‖22 + ‖𝛽𝑇∖[𝑘]‖22 + 𝜎2
)︀
.
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Using (4.27) the above inequality implies w.h.p.

‖ (𝛽 − 𝛽*)[𝑘]∩𝑇 ‖22 <
1

4

(︀
1/4(‖(𝛽 − 𝛽*)[𝑘]∩𝑇‖22 + 𝜎2) + 𝜎2

)︀

which implies

‖ (𝛽 − 𝛽*)[𝑘]∩𝑇 ‖22 <
1

3
𝜎2,

a contradiction with the inequality (4.28).

Proof of Theorem 4.2.2 and Theorem 4.2.5. Given Proposition 4.2.4 we only need to establish

Theorem 4.2.5 to establish both of the Theorems, that is we only need to prove that there is no

non-trivial local minimum for (Φ̃2) w.h.p. We choose constants 𝑐, 𝐶 > 0 so that the conclusion

of Theorem 4.2.6 is valid. Suppose the existence of a 𝑘-sparse vector 𝛽 which is a non-trivial

local minimum for (Φ̃2), that is it satisfies the following conditions (a),(b);

(a) Support (𝛽) ̸= Support (𝛽*), and

(b) if a 𝑘-sparse 𝛽1 satisfies

max{|Support (𝛽) ∖ Support (𝛽1) |, |Support (𝛽1) ∖ Support (𝛽) |} ≤ 1,

it must also satisfy

‖𝑌 −𝑋𝛽1‖2 ≥ ‖𝑌 −𝑋𝛽‖2.

We feed now 𝛽 as an input for the algorithm (LSA). From condition (b) we know that the

algorithm will terminate immediately without updating the vector. But from Theorem 4.2.6

we know that the output of LSA with arbitrary 𝑘-sparse vector as input will output a vector

satisfying conditions (1), (2) of Theorem 4.2.6 w.h.p. In particular, since 𝛽 was the output of

LSA with input itself, it should satisfy condition (1) w.h.p., that is Support (𝛽) = Support (𝛽*),

w.h.p. which contradicts the definition of 𝛽 (condition (a)). Therefore w.h.p. there does not

exist a non-trivial local minimum for (Φ̃2). This completes the proof.
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4.4 Conclusion

In this Chapter, we continue our study of the high dimensional linear regression model under

Gaussian assumptions on 𝑋,𝑊 and sparsity assumptions on 𝛽*. In contrast to Chapters 2, 3,

this Chapter does not assume the vector 𝛽* is binary-valued, and real values are allowed for the

entries of 𝛽*. Our focus is on the “easy" regime, that is 𝑛 > 𝑛alg where computationally efficient

methods such as LASSO are known to provably recover the support of the vector 𝛽*.

When 𝑛 > 𝐶𝑛alg for some sufficiently large constant 𝐶 > 0, we show that the Overlap Gap

Property indeed ceases to hold. This confirms, up to the multiplicative constant 𝐶 > 0, the

behavior suggested by the first moment curve analysis, presented in Chapter 3. To establish this

we perform a direct local analysis of the maximum likelihood estimation optimization problem

of the model (Φ̃2). We show that the landscape of the optimization problem is extremely smooth

at the easy regime: when 𝑛 > 𝐶𝑛alg all the local minima have identical support with 𝛽*. Finally,

we show that this can be exploited by a greedy local search algorithms which successfully works

in termination time which is, in principle, independent of the growing feature size 𝑝.
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Chapter 5

The Noiseless High Dimensional Linear

Regression. A Lattice Basis Reduction

Optimal Algorithm.

5.1 Introduction

We consider the following high-dimensional linear regression model. Consider 𝑛 samples of a

vector 𝛽* ∈ R𝑝 in a vector form 𝑌 = 𝑋𝛽* +𝑊 for some 𝑋 ∈ R𝑛×𝑝 and 𝑊 ∈ R𝑛. Given the

knowledge of 𝑌 and 𝑋 the goal is to infer 𝛽* using an efficient algorithm and the minimum

number 𝑛 of samples possible. Throughout the Chapter we call 𝑝 the number of features, 𝑋 the

measurement matrix and 𝑊 the noise vector.

This Chapter is devoted to the study of the high dimensional linear regression model but

under significantly different assumptions compared to the Chapters 2, 3 and 4. For this reason,

we motivate and carefully define the assumptions on 𝑋,𝑊𝛽* from scratch. Most results in the

literature and ourselves in the previous Chapters study the high dimensional linear regression

model under sparsity assumption on 𝛽*, which refers to 𝛽* having only a limited number of non-

zero entries compared to its dimension [Don06], [CRT06], [FR13]. This allows valid inference of

𝛽* with much less samples than feautres. During the past decades, the sparsity assumption led

to a fascinating line of research in statistics and compressed sensing, which established, among

other results, that several polynomial-time algorithms, such as Basis Pursuit Denoising Scheme
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and LASSO, can efficiently recover a sparse 𝛽* with number of samples much smaller than the

number of features [CRT06], [Wai09b], [FR13]. For example, as we mentioned in the Introduction

and in previous Chapters, it is established that if 𝛽* is constrained to have at most 𝑘 ≤ 𝑝 non-

zero entries, 𝑋 has iid 𝑁(0, 1) entries, 𝑊 has iid 𝑁(0, 𝜎2) entries for 𝜎2 = 𝑂 (𝑘), and 𝑛 is of

the order 𝑘 log
(︀
𝑝
𝑘

)︀
, then both of the mentioned algorithms can recover 𝛽*, up to the level of the

noise. Different structural assumptions than sparsity have also been considered in the literature.

For example, a recent result [BJPD17] makes the assumption that 𝛽* lies near the range of an

𝐿-Lipschitz generative model 𝐺 : R𝑘 → R𝑝 and it proposes an algorithm which succeeds with

𝑛 = 𝑂(𝑘 log𝐿) samples.

A downside of all of the above results is that they provide no computationally efficient

guarantee in the case 𝑛 is much smaller than 𝑘 log
(︀
𝑝
𝑘

)︀
. Consider for example the case where

the components of a sparse 𝛽* are binary-valued, and 𝑋,𝑊 follow the Gaussian assumptions

described above. Then as dicsussed in the Chapter 3 the statistical limit of the model is

𝑛 = 𝑛info = 2𝑘 log(𝑝/𝑘)/ log (𝑘/𝜎2 + 1). Supposing that 𝜎 is sufficiently small, it is a straight-

forward argument that 𝑛info trivialized to zero and therefore when 𝑛 = 1, 𝛽* is recoverable from

𝑌 = ⟨𝑋, 𝛽*⟩ +𝑊 . This can also be verified by a brute-force method which finds 𝛽* directly,

as 𝛽* is the only binary 𝑘-sparse vector which can satisfy 𝑌 = ⟨𝑋, 𝛽*⟩ + 𝑊 with probability

tending to one as 𝑝 goes to infinity (whp). On the other hand, for sparse and binary-valued 𝛽*,

the Basis Pursuit method in the noiseless case [DT10] and the Basis Pursuit Denoising Scheme

in the noisy case [GZ17b] have been proven to fail to recover a binary 𝛽* with 𝑛 = 𝑜(𝑘 log
(︀
𝑝
𝑘

)︀
)

samples. Furthermore, LASSO has been proven to fail to recover a vector with the same sup-

port of 𝛽*, with 𝑛 = 𝑜(𝑘 log 𝑝) samples [Wai09b]. This failure to capture the complexity of the

problem accurately enough for small sample sizes also lead to an algorithmic hardness conjecture

for the regime 𝑛 = 𝑜(𝑘 log
(︀
𝑝
𝑘

)︀
) [GZ17a], [GZ17b] which is described in Chapters 3, 4. While

this conjecture still stands in the general case, as we show in this Chapter, in the special case

where 𝛽* is rational-valued and the magnitude of the noise 𝑊 is sufficiently small, the statistical

computational gap can be closed and 𝛽* can be recovered even when 𝑛 = 1.

The structural assumption we impose on 𝛽* is that its entries are rational numbers with

denominator equal to some fixed positive integer value 𝑄 ∈ Z>0, something we refer to as the

𝑄-rationality assumption. Note that for any 𝑄, this assumption is trivially satisfied by the
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binary-valued 𝛽* which was discussed above. The 1-rationality assumption corresponds to 𝛽*

having integer entries, which is well-motivated in practise. For example, this assumption appears

frequently in the study of global navigation satellite systems (GPS) and communications [HB98],

[HV02], [BB99], [Bor11]. In the first reference the authors propose a mixed linear/integer model of

the form 𝑌 = 𝐴𝑥+𝐵𝑧+𝑊 where z is an integer valued vector corresponding to integer multiples

of certain wavelength. Several examples corresponding to regression models with integer valued

regression coefficients and zero noise (though not always in the same model) are also discussed in

the book [FR13]. In particular one application is the so-called Single-Pixel camera. In this model

a vector 𝛽 corresponds to color intensities of an image for different pixels and thus takes discrete

values. The model assumes no noise, which is one of the assumptions we adopt in our model,

though the corresponding regression matrix has i.i.d. +1/− 1 Bernoulli entries, as opposed to a

continuous distribution we assume. Two other applications involving noiseless regression models

found in the same reference are MRI imaging and Radar detection.

A large body of literature on noiseless regression type models is a series of results on phase

retrieval. Here the coefficients of the regression vector 𝛽* and the entries of the regression

matrix 𝑋 are complex valued, but the observation vector 𝑌 = 𝑋𝛽* is only observed through

absolute values. This model has many applications, including crystallography, see [CESV15].

The aforementioned work provides many references to phase retrieval model including the cases

when the entries of 𝛽* have a finite support. We believe that our method can also be extended

so that to model the case where the entries of the regression vector have a finite support, even

if irrationally valued, and the entries of 𝑌 are only observed through their magnitude. In other

words, we expect that the method presented in this Chapter applies to the phase retrieval problem

at least in some of the cases and this is one of the current directions we are exploring.

Noiseless regression model with integer valued regression coefficients were also important in

the theoretical development of compressive sensing methods. Specifically, Donoho [Don06] and

Donoho and Tanner [DT05],[DT10],[DT09] consider a noiseless regression model of the form 𝐴𝐵

where 𝐴 is a random (say Gaussian) matrix and 𝐵 is the unit cube [0, 1]𝑝. One of the goals of

these results was to count number of extreme points of the projected polytope 𝐴𝐵 in order to

explain the effectiveness of the linear programming based methods. The extreme points of this

polytope can only appear as projections of extreme points of 𝐵 which are all length-p binary
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vector, namely one deals with noiseless regression model with binary coefficients – an important

special case of the model we consider in this Chapter.

In the Bayesian setting, where the ground truth 𝛽* is sampled according to a discrete distri-

bution [DJM13] proposes a low-complexity algorithm which provably recovers 𝛽* with 𝑛 = 𝑜(𝑝)

samples. This algorithm uses the technique of approximate message passing (AMP) and is moti-

vated by ideas from statistical physics [KMS+12]. Even though the result from [DJM13] applies

to the general discrete case for 𝛽*, it requires the matrix 𝑋 to be spatially coupled, a property

that in particular does not hold for 𝑋 with iid standard Gaussian entries. Furthermore the

required sample size for the algorithm to work is only guaranteed to be sublinear in 𝑝, a sample

size potentially much bigger than the information-theoretic limit for recovery under sufficiently

small noise (𝑛 = 1). In the present Chapter, where 𝛽* satisfies the 𝑄-rationality assumption, we

propose a polynomial-time algorithm which applies for a large class of continuous distributions

for the iid entries of 𝑋, including the normal distribution, and provably works even when 𝑛 = 1.

The algorithm we propose is inspired by the algorithm introduced in [LO85] which solves, in

polynomial time, a certain version of the so-called Subset-Sum problem. To be more specific,

consider the following NP-hard algorithmic problem. Given 𝑝 ∈ Z>0 and 𝑦, 𝑥1, 𝑥2, . . . , 𝑥𝑝 ∈ Z>0

the goal is to find a ∅ ≠ 𝑆 ⊂ [𝑝] with 𝑦 =
∑︀

𝑖∈𝑆 𝑥𝑖 when at least one such set 𝑆 is assumed to exist.

Over 30 years ago, this problem received a lot of attention in the field of cryptography, based on

the belief that the problem would be hard to solve in many “real" instances. This would imply

that several already built public key cryptosystems, called knapsack public key cryptosystems,

could be considered safe from attacks [Lem79], [MH78]. This belief though was proven wrong

by several works in the early 80s, see for example [Sha82]. Motivated by this line of research,

Lagarias and Odlyzko in [LO85], and a year later Frieze in [Fri86], using a cleaner and shorter

argument, proved the same surprising fact: if 𝑥1, 𝑥2, . . . , 𝑥𝑝 follow an iid uniform distribution

on [2
1
2
(1+𝜖)𝑝2 ] := {1, 2, 3, . . . , 2 1

2
(1+𝜖)𝑝2} for some 𝜖 > 0 then there exists a polynomial-in-𝑝 time

algorithm which solves the subset-sum problem whp as 𝑝 → +∞. In other words, even though

the problem is NP-hard in the worst-case, assuming a quadratic-in-𝑝 number of bits for the

coordinates of 𝑥, the algorithmic complexity of the typical such problem is polynomial in 𝑝. The

successful efficient algorithm is based on an elegant application of a seminal algorithm in the

computational study of lattices called the Lenstra-Lenstra-Lovasz (LLL) algorithm, introduced
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in [LLL82]. This algorithm receives as an input a basis {𝑏1, . . . , 𝑏𝑚} ⊂ Z𝑚 of a full-dimensional

lattice ℒ and returns in time polynomial in 𝑚 and max𝑖=1,2,...,𝑚 log ‖𝑏𝑖‖∞ a non-zero vector 𝑧 in

the lattice, such that ‖𝑧‖2 ≤ 2
𝑚
2 ‖𝑧‖2, for all 𝑧 ∈ ℒ ∖ {0}.

Besides its significance in cryptography, the result of [LO85] and [Fri86] enjoys an interesting

linear regression interpretation as well. One can show that under the iid uniform in [2
1
2
(1+𝜖)𝑝2 ]

assumption for 𝑥1, 𝑥2, . . . , 𝑥𝑝, there exists exactly one set 𝑆 with 𝑦 =
∑︀

𝑖∈𝑆 𝑥𝑖 whp as 𝑝 tends to

infinity. Therefore if 𝛽* is the indicator vector of this unique set 𝑆, that is 𝛽*
𝑖 = 1(𝑖 ∈ 𝑆) for

𝑖 = 1, 2, . . . , 𝑝, we have that 𝑦 =
∑︀

𝑖 𝑥𝑖𝛽
*
𝑖 = ⟨𝑥, 𝛽*⟩ where 𝑥 := (𝑥1, 𝑥2, . . . , 𝑥𝑝). Furthermore using

only the knowledge of 𝑦, 𝑥 as input to the Lagarias-Odlyzko algorithm we obtain a polynomial

in 𝑝 time algorithm which recovers exactly 𝛽* whp as 𝑝→ +∞. Written in this form, and given

our earlier discussion on high-dimensional linear regression, this statement is equivalent to the

statement that the noiseless high-dimensional linear regression problem with binary 𝛽* and 𝑋

generated with iid elements from Unif[2
1
2
(1+𝜖)𝑝2 ] is polynomial-time solvable even with one sample

(𝑛 = 1), whp as 𝑝 grows to infinity. The main focus of this Chapter is to extend this result to

𝛽* satisfying the 𝑄-rationality assumption, continuous distributions on the iid entries of 𝑋 and

non-trivial noise levels.

Summary of the Results

We propose a polynomial time algorithm for high-dimensional linear regression problem and

establish a general result for its performance. We show that if the entries of 𝑋 ∈ R𝑛×𝑝 are

iid from an arbitrary continuous distribution with bounded density and finite expected value,

𝛽* satisfies the 𝑄-rationality assumption, ‖𝛽*‖∞ ≤ 𝑅 for some 𝑅 > 0, and 𝑊 is either an

adversarial vector with infinity norm at most 𝜎 or has iid mean-zero entries with variance at

most 𝜎2, then under some explicitly stated assumption on the parameters 𝑛, 𝑝, 𝜎,𝑅,𝑄 our al-

gorithm recovers exactly the vector 𝛽* in time which is polynomial in 𝑛, 𝑝, log( 1
𝜎
), log𝑅, log𝑄,

whp as 𝑝 tends to infinity. As a corollary, we show that for any 𝑄 and 𝑅 our algorithm can

infer correctly 𝛽*, when 𝜎 is at most exponential in − (𝑝2/2 + (2 + 𝑝) log(𝑄𝑅)), even from one

observation (𝑛 = 1). We show that for general 𝑛 our algorithm can tolerate noise level 𝜎 which

is exponential in − ((2𝑛+ 𝑝)2/2𝑛+ (2 + 𝑝/𝑛) log(𝑄𝑅)). We complement our results with the

information-theoretic limits of our problem. We show that in the case of Gaussian white noise
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𝑊 , a noise level which is exponential in − 𝑝
𝑛
log(𝑄𝑅), which is essentially the second part of our

upper bound, cannot be tolerated. This allows us to conclude that in the regime 𝑛 = 𝑜 (𝑝/ log 𝑝)

and 𝑅𝑄 = 2𝜔(𝑝) our algorithm tolerates the optimal information theoretic level of noise.

The algorithm we propose receives as input real-valued data 𝑌,𝑋 but importantly it truncates

in the first step the data by keeping the first 𝑁 bits after zero of every entry. In particular,

this allows the algorithm to perform only finite-precision artihmetic operations. Here 𝑁 is

a parameter of our algorithm chosen by the algorithm designer. For our recovery results it is

chosen to be polynomial in 𝑝 and log( 1
𝜎
).

A crucial step towards our main result is the extension of the Lagarias-Odlyzko algorithm

[LO85], [Fri86] to not necessarily binary, integer vectors 𝛽* ∈ Z𝑝, for measurement matrix 𝑋 ∈
Z𝑛×𝑝 with iid entries not necessarily from the uniform distribution, and finally, for non-zero noise

vector 𝑊 . As in [LO85] and [Fri86], the algorithm we construct depends crucially on building

an appropriate lattice and applying the LLL algorithm on it. There is though an important

additional step in the algorithm presented in the present Chapter compared with the algorithm

in [LO85] and [Fri86]. The latter algorithm is proven to recover a non-zero integer multiple 𝜆𝛽*

of the underlying binary vector 𝛽*. Then since 𝛽* is known to be binary, the exact recovery

becomes a matter of renormalizing out the factor 𝜆 from every non-zero coordinate. On the

other hand, even if we establish in our case the corresponding result and recover a non-zero

integer multiple of 𝛽* whp, this last renormalizing step would be impossible as the ground truth

vector is not assumed to be binary. We address this issue as follows. First we notice that the

renormalization step remains valid if the greatest common divisor of the elements of 𝛽* is 1.

Under this assumption from any non-zero integer multiple of 𝛽*, 𝜆𝛽* we can obtain the vector

itself by observing that the greatest common divisor of 𝜆𝛽* equals to 𝜆, and computing 𝜆 by

using for instance the Euclid’s algorithm. We then generalize our recovery guarantee to arbitrary

𝛽*. We do this by first translating implicitly the vector 𝛽* with a random integer vector 𝑍 via

translating our observations 𝑌 = 𝑋𝛽* + 𝑊 by 𝑋𝑍 to obtain 𝑌 + 𝑋𝑍 = 𝑋(𝛽* + 𝑍) + 𝑊 .

We then prove that the elements of 𝛽* + 𝑍 have greatest common divisor equal to unity with

probability tending to one. This last step is based on an analytic number theory argument which

slightly extends a beautiful result from probabilistic number theory (see for example, Theorem

332 in [HW75]) according to which lim𝑚→+∞ P𝑃,𝑄∼Unif{1,2,...,𝑚},𝑃⊥⊥𝑄 [gcd (𝑃,𝑄) = 1] = 6
𝜋2 , where
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𝑃 ⊥⊥ 𝑄 refers to 𝑃,𝑄 being independent random variables. This result is not of clear origin in the

literature, but possibly it is attributed to Chebyshev, as mentioned in [EL85]. A key implication

of this result for us is the fact that the limit above is strictly positive.

Definitions and Notation

Let Z* denote Z ∖ {0}. For 𝑘 ∈ Z>0 we set [𝑘] := {1, 2, . . . , 𝑘}. For a vector 𝑥 ∈ R𝑑 we define

Diag𝑑×𝑑 (𝑥) ∈ R𝑑×𝑑 to be the diagonal matrix with Diag𝑑×𝑑 (𝑥)𝑖𝑖 = 𝑥𝑖, for 𝑖 ∈ [𝑑]. For 1 ≤ 𝑝 <∞
by ℒ𝑝 we refer to the standard 𝑝-norm notation for finite dimensionall real vectors. Given two

vectors 𝑥, 𝑦 ∈ R𝑑 the Euclidean inner product notation is denoted by ⟨𝑥, 𝑦⟩ :=
∑︀𝑑

𝑖=1 𝑥𝑖𝑦𝑖. By

log : R>0 → R we refer the logarithm with base 2. The lattice ℒ ⊆ Z𝑘 generated by a set of

linearly independent 𝑏1, . . . , 𝑏𝑘 ∈ Z𝑘 is defined as {∑︀𝑘
𝑖=1 𝑧𝑖𝑏𝑖|𝑧1, 𝑧2, . . . , 𝑧𝑘 ∈ Z}. Throughout the

Chapter we use the standard asymptotic notation, 𝑜,𝑂,Θ,Ω for comparing the growth of two

real-valued sequences 𝑎𝑛, 𝑏𝑛, 𝑛 ∈ Z>0.Finally, we say that a sequence of events {𝐴𝑝}𝑝∈N holds

with high probability (whp) as 𝑝→ +∞ if lim𝑝→+∞ P (𝐴𝑝) = 1.

5.2 Main Results

5.2.1 Extended Lagarias-Odlyzko algorithm

Let 𝑛, 𝑝,𝑅 ∈ Z>0. Given 𝑋 ∈ Z𝑛×𝑝, 𝛽* ∈ (Z ∩ [−𝑅,𝑅])𝑝 and 𝑊 ∈ Z𝑛, set 𝑌 = 𝑋𝛽* +𝑊 . From

the knowledge of 𝑌,𝑋 the goal is to infer exactly 𝛽*. For this task we propose the following

algorithm which is an extension of the algorithm in [LO85] and [Fri86]. For realistic purposes

the values of 𝑅, ‖𝑊‖∞ is not assumed to be known exactly. As a result, the following algorithm,

besides 𝑌,𝑋, receives as an input a number 𝑅̂ ∈ Z>0 which is an estimated upper bound in

absolute value for the entries of 𝛽* and a number 𝑊̂ ∈ Z>0 which is an estimated upper bound

in absolute value for the entries of 𝑊 .

We explain here informally the steps of the (ELO) algorithm and briefly sketch the motivation

behind each one of them. In the first and second steps the algorithm translates 𝑌 by 𝑋𝑍 where

𝑍 is a random vector with iid elements chosen uniformly from {𝑅̂+1, 𝑅̂+2, . . . , 2𝑅̂+ log 𝑝}. In

that way 𝛽* is translated implicitly to 𝛽 = 𝛽* +𝑍 because 𝑌1 = 𝑌 +𝑋𝑍 = 𝑋(𝛽* +𝑍) +𝑊 . As
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Algorithm 1 Extended Lagarias-Odlyzko (ELO) Algorithm
Input: (𝑌,𝑋, 𝑅̂, 𝑊̂ ), 𝑌 ∈ Z𝑛, 𝑋 ∈ Z𝑛×𝑝, 𝑅̂, 𝑊̂ ∈ Z>0.
Output: 𝛽* an estimate of 𝛽*

1 Generate a random vector 𝑍 ∈ {𝑅̂ + 1, 𝑅̂ + 2, . . . , 2𝑅̂ + log 𝑝}𝑝 with iid entries uniform in
{𝑅̂ + 1, 𝑅̂ + 2, . . . , 2𝑅̂ + log 𝑝}

2 Set 𝑌1 = 𝑌 +𝑋𝑍.
3 For each 𝑖 = 1, 2, . . . , 𝑛, if |(𝑌1)𝑖| < 3 set (𝑌2)𝑖 = 3 and otherwise set (𝑌2)𝑖 = (𝑌1)𝑖.

4 Set 𝑚 = 2𝑛+⌈ 𝑝
2
⌉+3𝑝

(︁
𝑅̂⌈√𝑝⌉+ 𝑊̂ ⌈√𝑛⌉

)︁
.

5 Output 𝑧 ∈ R2𝑛+𝑝 from running the LLL basis reduction algorithm on the lattice generated by
the columns of the following (2𝑛+ 𝑝)× (2𝑛+ 𝑝) integer-valued matrix,

𝐴𝑚 :=

⎡
⎣
𝑚𝑋 −𝑚Diag𝑛×𝑛 (𝑌2) 𝑚𝐼𝑛×𝑛

𝐼𝑝×𝑝 0𝑝×𝑛 0𝑝×𝑛

0𝑛×𝑝 0𝑛×𝑛 𝐼𝑛×𝑛

⎤
⎦ (5.1)

6 Compute 𝑔 = gcd (𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+𝑝) , using the Euclid’s algorithm.
7 If 𝑔 ̸= 0, output 𝛽* = 1

𝑔
(𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+𝑝)

𝑡 − 𝑍. Otherwise, output 𝛽* = 0𝑝×1.

we will establish using a number theoretic argument, gcd (𝛽) = 1 whp as 𝑝 → +∞ with respect

to the randomness of 𝑍, even though this is not necessarily the case for the original 𝛽*. This is

an essential requirement for our technique to exactly recover 𝛽* and steps six and seven to be

meaningful. In the third step the algorithm gets rid of the significantly small observations. The

minor but necessary modification of the noise level affects the observations in a negligible way.

The fourth and fifth steps of the algorithm provide a basis for a specific lattice in 2𝑛 + 𝑝

dimensions. The lattice is built with the knowledge of the input and 𝑌2, the modified 𝑌 . The

algorithm in step five calls the LLL basis reduction algorithm to run for the columns of 𝐴𝑚 as

initial basis for the lattice. The fact that 𝑌 has been modified to be non-zero on every coordinate

is essential here so that 𝐴𝑚 is full-rank and the LLL basis reduction algorithm, defined in [LLL82],

can be applied,. This application of the LLL basis reduction algorithm is similar to the one used

in [Fri86] with one important modification. In order to deal here with multiple equations and

non-zero noise, we use 2𝑛+ 𝑝 dimensions instead of 1 + 𝑝 in [Fri86]. Following though a similar

strategy as in [Fri86], it can be established that the 𝑛+ 1 to 𝑛+ 𝑝 coordinates of the output of

the algorithm, 𝑧 ∈ Z2𝑛+𝑝, correspond to a vector which is a non-zero integer multiple of 𝛽, say

𝜆𝛽 for 𝜆 ∈ Z*, w.h.p. as 𝑝→ +∞.

The proof of the above result is an important part in the analysis of the algorithm and it is
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heavily based on the fact that the matrix 𝐴𝑚, which generates the lattice, has its first 𝑛 rows

multiplied by the “large enough" and appropriately chosen integer 𝑚 which is defined in step

four. It can be shown that this property of 𝐴𝑚 implies that any vector 𝑧 in the lattice with

“small enough" ℒ2 norm necessarily satisfies (𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+𝑝) = 𝜆𝛽 for some 𝜆 ∈ Z* whp as

𝑝 → +∞. In particular, using that 𝑧 is guaranteed to satisfy ‖𝑧‖2 ≤ 2
2𝑛+𝑝

2 ‖𝑧‖2 for all non-zero

𝑧 in the lattice, it can be derived that 𝑧 has a “small enough" ℒ2 norm and therefore indeed

satisfies the desired property whp as 𝑝 → +∞. Assuming now the validity of the gcd (𝛽) = 1

property, step six finds in polynomial time this unknown integer 𝜆 that corresponds to 𝑧, because

gcd (𝑧𝑛+1, 𝑧𝑛+2, . . . , 𝑧𝑛+𝑝) = gcd (𝜆𝛽) = 𝜆. Finally step seven scales out 𝜆 from every coordinate

and then subtracts the known random vector 𝑍, to output exactly 𝛽*.

Of course the above is based on an informal reasoning. Formally we establish the following

result.

Theorem 5.2.1. Suppose

(1) 𝑋 ∈ Z𝑛×𝑝 is a matrix with iid entries generated according to a distribution 𝒟 on Z which

for some 𝑁 ∈ Z>0 and constants 𝐶, 𝑐 > 0, assigns at most 𝑐
2𝑁

probability on each element

of Z and satisfies E[|𝑉 |] ≤ 𝐶2𝑁 , for 𝑉 𝑑
= 𝒟;

(2) 𝛽* ∈ (Z ∩ [−𝑅,𝑅])𝑝, 𝑊 ∈ Z𝑛;

(3) 𝑌 = 𝑋𝛽* +𝑊 .

Suppose furthermore that 𝑅̂ ≥ 𝑅 and

𝑁 ≥ 1

2𝑛
(2𝑛+ 𝑝)

[︁
2𝑛+ 𝑝+ 10 log

(︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︁]︁

+ 6 log ((1 + 𝑐)𝑛𝑝) . (5.2)

For any 𝑊̂ ≥ ‖𝑊‖∞ the algorithm ELO with input (𝑌,𝑋, 𝑅̂, 𝑊̂ ) outputs exactly 𝛽* w.p. 1 −
𝑂
(︁

1
𝑛𝑝

)︁
(whp as 𝑝→ +∞) and terminates in time at most polynomial in 𝑛, 𝑝,𝑁, log 𝑅̂ and log 𝑊̂ .

We defer the proof to Section 5.4.

Remark 5.2.2. In the statement of Theorem 5.2.1 the only parameters that are assumed to grow

to infinity are 𝑝 and whichever other parameters among 𝑛,𝑅, ‖𝑊‖∞, 𝑁 are implied to grow to

infinity because of (5.2). Note in particular that 𝑛 can remain bounded, including the case 𝑛 = 1,

if 𝑁 grows fast enough.
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Remark 5.2.3. It can be easily checked that the assumptions of Theorem 5.2.1 are satisfied

for 𝑛 = 1, 𝑁 = (1 + 𝜖)𝑝
2

2
, 𝑅 = 1, 𝒟 = Unif{1, 2, 3, . . . , 2(1+𝜖) 𝑝

2

2 } and 𝑊 = 0. Under these

assumptions, the Theorem’s implication is a generalization of the result from [LO85] and [Fri86]

to the case 𝛽* ∈ {−1, 0, 1}𝑝.

5.2.2 Applications to High-Dimensional Linear Regression

The Model

We first define the 𝑄-rationality assumption.

Definition 5.2.4. Let 𝑝,𝑄 ∈ Z>0. We say that a vector 𝛽 ∈ R𝑝 satisfies the 𝑄-rationality

assumption if for all 𝑖 ∈ [𝑝], 𝛽*
𝑖 = 𝐾𝑖

𝑄
, for some 𝐾𝑖 ∈ Z.

The high-dimensional linear regression model we are considering is as follows.

Assumptions 1. Let 𝑛, 𝑝,𝑄 ∈ Z>0 and 𝑅, 𝜎, 𝑐 > 0. Suppose

(1) measurement matrix 𝑋 ∈ R𝑛×𝑝 with iid entries generated according to a continuous distri-

bution 𝒞 which has density 𝑓 with ‖𝑓‖∞ ≤ 𝑐 and satisfies E[|𝑉 |] < +∞, where 𝑉 𝑑
= 𝒞;

(2) ground truth vector 𝛽* satisfies 𝛽* ∈ [−𝑅,𝑅]𝑝 and the 𝑄-rationality assumption;

(3) 𝑌 = 𝑋𝛽* +𝑊 for some noise vector 𝑊 ∈ R𝑛. It is assumed that either ‖𝑊‖∞ ≤ 𝜎 or 𝑊

has iid entries with mean zero and variance at most 𝜎2, depending on the context.

Objective: Based on the knowledge of 𝑌 and 𝑋 the goal is to recover 𝛽* using an efficient

algorithm and using the smallest number 𝑛 of samples possible. The recovery should occur with

high probability (w.h.p), as 𝑝 diverges to infinity.

The Lattice-Based Regression (LBR) Algorithm

As mentioned in the Introduction, we propose an algorithm to solve the regression problem, which

we call the Lattice-Based Regression (LBR) algorithm. The exact knowledge of 𝑄,𝑅, ‖𝑊‖∞ is

not assumed. Instead the algorithm receives as an input, additional to 𝑌 and 𝑋, 𝑄̂ ∈ Z>0 which

is an estimated multiple of 𝑄, 𝑅̂ ∈ Z>0 which is an estimated upper bound in absolute value
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for the entries of 𝛽* and 𝑊̂ ∈ R>0 which is an estimated upper bound in absolute value for the

entries of the noise vector 𝑊 . Furthermore an integer number 𝑁 ∈ Z>0 is given to the algorithm

as an input, which, as we will explain, corresponds to a truncation in the data in the first step

of the algorithm. Given 𝑥 ∈ R and 𝑁 ∈ Z>0 let 𝑥𝑁 = sign(𝑥) ⌊2
𝑁 |𝑥|⌋
2𝑁

, which corresponds to the

operation of keeping the first 𝑁 bits after zero of a real number 𝑥.

Algorithm 2 Lattice Based Regression (LBR) Algorithm
Input: (𝑌,𝑋,𝑁, 𝑄̂, 𝑅̂, 𝑊̂ ), 𝑌 ∈ Z𝑛, 𝑋 ∈ Z𝑛×𝑝 and 𝑁, 𝑄̂, 𝑅̂, 𝑊̂ ∈ Z>0.
Output: 𝛽* an estimate of 𝛽*

8 Set 𝑌𝑁 = ((𝑌𝑖)𝑁)𝑖∈[𝑛] and 𝑋𝑁 = ((𝑋𝑖𝑗)𝑁)𝑖∈[𝑛],𝑗∈[𝑝].
9 Set (𝛽1)

* to be the output of the ELO algorithm with input:
(︁
2𝑁𝑄̂𝑌𝑁 , 2

𝑁𝑋𝑁 , 𝑄̂𝑅̂, 2𝑄̂
(︁
2𝑁𝑊̂ + 𝑅̂𝑝

)︁)︁
.

10 Output 𝛽* = 1

𝑄̂
(𝛽1)

*.

We now explain informally the steps of the algorithm. In the first step, the algorithm truncates

each entry of 𝑌 and 𝑋 by keeping only its first 𝑁 bits after zero, for some 𝑁 ∈ Z>0. This in

particular allows to perform finite-precision operations and to call the ELO algorithm in the next

step which is designed for integer input. In the second step, the algorithm naturally scales up

the truncated data to integer values, that is it scales 𝑌𝑁 by 2𝑁𝑄̂ and 𝑋𝑁 by 2𝑁 . The reason

for the additional multiplication of the observation vector 𝑌 by 𝑄̂ is necessary to make sure the

ground truth vector 𝛽* can be treated as integer-valued. To see this notice that 𝑌 = 𝑋𝛽* +𝑊

and 𝑌𝑁 , 𝑋𝑁 being “close" to 𝑌,𝑋 imply

2𝑁𝑄̂𝑌𝑁 = 2𝑁𝑋𝑁(𝑄̂𝛽
*) + “extra noise terms" + 2𝑁𝑄̂𝑊.

Therefore, assuming the control of the magnitude of the extra noise terms, by using the 𝑄-

rationality assumption and that 𝑄̂ is estimated to be a multiple of 𝑄, the new ground truth

vector becomes 𝑄̂𝛽* which is integer-valued. The final step of the algorithm consist of rescaling

now the output of Step 2, to an output which is estimated to be the original 𝛽*. In the next

subsection, we turn this discussion into a provable recovery guarantee.
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Recovery Guarantees for the LBR algorithm

We state now our main result, explicitly stating the assumptions on the parameters, under which

the LBR algorithm recovers exactly 𝛽* from bounded but adversarial noise 𝑊 .

Theorem 5.2.5.A. Under Assumption 1 and assuming 𝑊 ∈ [−𝜎, 𝜎]𝑛 for some 𝜎 ≥ 0, the

following holds. Suppose 𝑄̂ is a multiple of 𝑄, 𝑅̂ ≥ 𝑅 and

𝑁 >
1

2
(2𝑛+ 𝑝)

(︁
2𝑛+ 𝑝+ 10 log 𝑄̂+ 10 log

(︁
2𝑁𝜎 + 𝑅̂𝑝

)︁
+ 20 log(3 (1 + 𝑐)𝑛𝑝)

)︁
. (5.3)

For any 𝑊̂ ≥ 𝜎, the LBR algorithm with input (𝑌,𝑋,𝑁, 𝑄̂, 𝑅̂, 𝑊̂ ) terminates with 𝛽* = 𝛽* w.p.

1−𝑂
(︁

1
𝑛𝑝

)︁
(whp as 𝑝→ +∞) and in time polynomial in 𝑛, 𝑝,𝑁, log 𝑅̂, log 𝑊̂ and log 𝑄̂.

Applying Theorem 5.2.5.A we establish the following result handling random noise 𝑊 .

Theorem 5.2.5.B. Under Assumption 1 and assuming 𝑊 ∈ R𝑛 is a vector with iid entries gen-

erating according to an, independent from 𝑋, distribution 𝒲 on R with mean zero and variance

at most 𝜎2 for some 𝜎 ≥ 0 the following holds. Suppose that 𝑄̂ is a multiple of 𝑄, 𝑅̂ ≥ 𝑅, and

𝑁 >
1

2
(2𝑛+ 𝑝)

(︁
2𝑛+ 𝑝+ 10 log 𝑄̂+ 10 log

(︁
2𝑁

√
𝑛𝑝𝜎 + 𝑅̂𝑝

)︁
+ 20 log(3 (1 + 𝑐)𝑛𝑝)

)︁
. (5.4)

For any 𝑊̂ ≥ √
𝑛𝑝𝜎 the LBR algorithm with input (𝑌,𝑋,𝑁, 𝑄̂, 𝑅̂, 𝑊̂ ) terminates with 𝛽* = 𝛽*

w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
(whp as 𝑝→ +∞) and in time polynomial in 𝑛, 𝑝,𝑁, log 𝑅̂, log 𝑊̂ and log 𝑄̂.

Both proofs of Theorems 5.2.5.A and 5.2.5.B are deferred to Section 5.5.

Noise tolerance of the LBR algorithm

The assumptions (5.2) and (5.4) might make it hard to build an intuition for the truncation level

the LBR algorithm provably works. For this reason, in this subsection we simplify it and state

a Proposition explicitly mentioning the optimal truncation level and hence characterizing the

optimal level of noise that the LBR algorithm can tolerate with 𝑛 samples.

First note that in the statements of Theorem 5.2.5.A and Theorem 5.2.5.B the only parameters

that are assumed to grow are 𝑝 and whichever other parameter is implied to grow because of

(5.2) and (5.4). Therefore, importantly, 𝑛 does not necessarily grow to infinity, if for example
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𝑁, 1
𝜎

grow appropriately with 𝑝. That means that Theorem 5.2.5.A and Theorem 5.2.5.B imply

non-trivial guarantees for arbitrary sample size 𝑛. The proposition below shows that if 𝜎 is at

most exponential in −(1 + 𝜖)
[︁
(𝑝+2𝑛)2

2𝑛
+ (2 + 𝑝

𝑛
) log (𝑅𝑄)

]︁
for some 𝜖 > 0, then for appropriately

chosen truncation level 𝑁 the LBR algorithm recovers exactly the vector 𝛽* with 𝑛 samples.

In particular, with one sample (𝑛 = 1) LBR algorithm tolerates noise level up to exponential

in −(1 + 𝜖) [𝑝2/2 + (2 + 𝑝) log(𝑄𝑅)] for some 𝜖 > 0. On the other hand, if 𝑛 = Θ(𝑝) and

log (𝑅𝑄) = 𝑜(𝑝), the LBR algorithm tolerates noise level up to exponential in −𝑂(𝑝).

Proposition 5.2.6. Under Assumption 1 and assuming 𝑊 ∈ R𝑛 is a vector with iid entries gen-

erating according to an, independent from 𝑋, distribution 𝒲 on R with mean zero and variance

at most 𝜎2 for some 𝜎 ≥ 0, the following holds.

Suppose 𝑝 ≥ 300
𝜖
log
(︁

300
(1+𝑐)𝜖

)︁
and for some 𝜖 > 0, 𝜎 ≤ 2

−(1+𝜖)

[︂
(𝑝+2𝑛)2

2𝑛
+(2+ 𝑝

𝑛
) log(𝑅𝑄)

]︂
. Then the

LBR algorithm with

∙ input 𝑌,𝑋, 𝑄̂ = 𝑄, 𝑅̂ = 𝑅 and 𝑊̂∞ = 1 and

∙ truncation level 𝑁 satisfying log
(︀
1
𝜎

)︀
≥ 𝑁 ≥ (1 + 𝜖)

[︁
(𝑝+2𝑛)2

2𝑛
+ (2 + 𝑝

𝑛
) log (𝑅𝑄)

]︁
,

terminates with 𝛽* = 𝛽* w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
(whp as 𝑝 → +∞) and in time polynomial in

𝑛, 𝑝,𝑁, log 𝑅̂, log 𝑊̂ and log 𝑄̂.

The proof of Proposition 5.2.6 is deferred to Section 5.6.

It is worth noticing that in the noisy case (𝜎 > 0) the above Proposition requires the trun-

cation level 𝑁 to be upper bounded by log( 1
𝜎
), which implies the seemingly counter-intuitive

conclusion that revealing more bits of the data after some point can “hurt" the performance of

the recovery mechanism. Note that this is actually justified because of the presence of adversarial

noise of magnitute 𝜎. In particular, handling an arbitrary noise of absolute value at most of the

order 𝜎 implies that the only bits of each observation that are certainly unaffected by the noise

are the first log
(︀
1
𝜎

)︀
bits. Any bit in a later position could have potentially changed because of

the noise. This correct middle ground for the truncation level 𝑁 appears to be necessary also in

the analysis of the synthetic experiments with the LBR algorithm (see Section 5.3).
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Information Theoretic Bounds

In this subsection, we discuss the maximum noise that can be tolerated information-theoretically

in recovering a 𝛽* ∈ [−𝑅,𝑅]𝑝 satisfying the 𝑄-rationality assumption. We establish that un-

der Gaussian white noise, any successful recovery mechanism can tolerate noise level at most

exponentially small in − [𝑝 log (𝑄𝑅) /𝑛].

Proposition 5.2.7. Suppose that 𝑋 ∈ R𝑛×𝑝 is a vector with iid entries following a continuous

distribution 𝒟 with E[|𝑉 |] < +∞, where 𝑉
𝑑
= 𝒟, 𝛽* ∈ [−𝑅,𝑅]𝑝 satisfies the 𝑄-rationality

assumption, 𝑊 ∈ R𝑛 has iid 𝑁(0, 𝜎2) entries and 𝑌 = 𝑋𝛽* + 𝑊 . Suppose furthermore that

𝜎 > 𝑅(𝑛𝑝)3
(︁
2

2𝑝 log(2𝑄𝑅+1)
𝑛 − 1

)︁− 1
2 . Then there is no mechanism which, whp as 𝑝→ +∞, recovers

exactly 𝛽* with knowledge of 𝑌,𝑋,𝑄,𝑅, 𝜎. That is, for any function 𝛽* = 𝛽* (𝑌,𝑋,𝑄,𝑅, 𝜎) we

have

lim sup
𝑝→+∞

P
(︁
𝛽* = 𝛽*

)︁
< 1.

The proof of Proposition 5.2.7 is deferred to Section 5.6.

Sharp Optimality of the LBR Algorithm

Using Propositions 5.2.6 and 5.2.7 the following sharp result is established.

Proposition 5.2.8. Under Assumptions 1 where 𝑊 ∈ R𝑛 is a vector with iid 𝑁(0, 𝜎2) entries

the following holds. Suppose that 𝑛 = 𝑜
(︁

𝑝
log 𝑝

)︁
and 𝑅𝑄 = 2𝜔(𝑝). Then for 𝜎0 := 2−

𝑝 log(𝑅𝑄)
𝑛 and

𝜖 > 0:

∙ if 𝜎 > 𝜎1−𝜖
0 ,then the w.h.p. exact recovery of 𝛽* from the knowledge of 𝑌,𝑋,𝑄,𝑅, 𝜎 is

impossible.

∙ if 𝜎 < 𝜎1+𝜖
0 , then the w.h.p. exact recovery of 𝛽* from the knowledge of 𝑌,𝑋,𝑄,𝑅, 𝜎 is

possible by the LBR algorithm.

The proof of Proposition 5.2.8 is deferred to Section 5.6.

5.3 Synthetic Experiments

In this section we present an experimental analysis of the ELO and LBR algorithms.
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Figure 5-1: Average performance and runtime of ELO over 20 instances with 𝑝 = 30
features and 𝑛 = 1, 10, 30 samples.

ELO algorithm: We focus on 𝑝 = 30 features sample sizes 𝑛 = 1, 𝑛 = 10 and 𝑛 = 30,

𝑅 = 100 and zero-noise 𝑊 = 0. Each entry of 𝛽* is iid Unif ({1, 2, . . . , 𝑅 = 100}). For 10

values of 𝛼 ∈ (0, 3), specifically 𝛼 ∈ {0.25, 0.5, 0.75, 1, 1.3, 1.6, 1.9, 2.25, 2.5, 2.75}, we generate

the entries of 𝑋 iid Unif
(︀
{1, 2, 3, . . . , 2𝑁}

)︀
for 𝑁 = 𝑝2

2𝛼𝑛
. For each combination of 𝑛, 𝛼 we

generate 20 independent instances of inputs. We plot in Figure 1 the fractions of instances where

the output of the ELO algorithm outputs exactly 𝛽* and the average termination time of the

algorithm.

Comments: First, we observe that importantly the algorithm recovers the vectors correctly

on all 𝛼 < 1-instances with 𝑝 = 30 features, even if our theoretical guarantees are only for large

enough 𝑝. Second, Theorem 5.2.1 implies that if 𝑁 > (2𝑛+ 𝑝)2 /2𝑛 and large 𝑝, ELO recovers

𝛽*, with high probability. In the experiments we observe that indeed ELO algorithm works in

that regime, as then 𝛼 = 𝑝2

2𝑛𝑁
< 1. Also the experiments show that ELO works for larger values

of 𝛼. Finally, the termination time of the algorithm was on average 1 minute and worst case 5

minutes, granting it reasonable for many applications.

LBR algorithm: We focus on 𝑝 = 30 features, 𝑛 = 10 samples, 𝑄 = 1 and 𝑅 = 100. We

generate each entry of 𝛽* w.p. 0.5 equal to zero and w.p. 0.5, Unif ({1, 2, . . . , 𝑅 = 100}). We

generate the entries of 𝑋 iid 𝑈(0, 1) and of 𝑊 iid 𝑈(−𝜎, 𝜎) for 𝜎 ∈ {0, 𝑒−20, 𝑒−12, 𝑒−4}. We

generate 20 independent instances for any combination of 𝜎 and truncation level 𝑁 . We plot the

fraction of instances where the output of LBR algorithm is exactly 𝛽*.
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Figure 5-2: Average performance of LBR algorithm for various noise and truncation levels.

Comments: The experiments show that, first LBR works correctly in many cases for the

moderate value of 𝑝 = 30 and second that there is indeed an appropriate tuned truncation level

(2𝑛 + 𝑝)2/2𝑛 < 𝑁 < log (1/𝜎) for which LBR succeeds. The latter is in exact agreement with

Proposition 5.2.6.

5.4 Proof of Theorem 5.2.1

Proof. We first observe that directly from (5.2),

𝑁 ≥ 10 log
(︀√

𝑝+
√
𝑛 (‖𝑊‖∞ + 1)

)︀

≥ 5 log
(︀√

𝑝
√
𝑛 (‖𝑊‖∞ + 1)

)︀
, from the elementary 𝑎+ 𝑏 ≥

√
𝑎𝑏

≥ 2 log (𝑝𝑛 (‖𝑊‖∞ + 1)) .

Therefore 2𝑁 ≥ (𝑝𝑛 (1 + ‖𝑊‖∞))2 which easily implies

‖𝑊‖∞
2𝑁

≤ 1

𝑛2𝑝2
= 𝛿,

where we set for convenience 𝛿 = 𝛿𝑝 :=
1

𝑛2𝑝2
.

Lemma 5.4.1. For all 𝑖 ∈ [𝑛], |(𝑌2)𝑖| ≥ 3
2
𝛿2𝑁 , w.p. at least 1−𝑂

(︁
1
𝑛𝑝

)︁
.
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Proof. First if 𝛿2𝑁 < 2, for all 𝑖 ∈ [𝑛], |(𝑌2)𝑖| ≥ 3 ≥ 3
2
𝛿2𝑁 , because of the second step of the

algorithm.

Assume now that 𝛿2𝑁 ≥ 2. In that case first observe 𝑌1 := 𝑌 +𝑋𝑍 = 𝑋(𝛽* + 𝑍) +𝑊 and

therefore from the definition of 𝑌2, 𝑌2 = 𝑋 (𝛽* + 𝑍) +𝑊1 for some 𝑊1 ∈ Z𝑛 with ‖𝑊1‖∞ ≤
‖𝑊‖∞ + 1. Letting 𝛽 = 𝛽* + 𝑍 we obtain that for all 𝑖 ∈ [𝑛], 𝑌𝑖 = ⟨𝑋(𝑖), 𝛽⟩+ (𝑊1)𝑖, where 𝑋(𝑖)

is the 𝑖-th row of 𝑋, and therefore

(𝑌2)𝑖 ≥ |
𝑝∑︁

𝑗=1

𝑋𝑖𝑗𝛽𝑗| − ‖𝑊1‖∞ ≥ |
𝑝∑︁

𝑗=1

𝑋𝑖𝑗𝛽𝑗| − ‖𝑊‖∞ − 1.

Furthermore 𝑅̂ ≥ 𝑅 implies 𝛽 ∈ [1, 3𝑅̂ + log 𝑝]𝑝.

We claim that conditional on 𝛽 ∈ [1, 3𝑅̂ + 𝑝]𝑝 for all 𝑖 = 1, . . . , 𝑛, |∑︀𝑝
𝑗=1𝑋𝑖𝑗𝛽𝑗| ≥ 3𝛿2𝑁 w.p.

at least 1−𝑂
(︁

1
𝑛𝑝

)︁
with respect to the randomness of 𝑋. Note that this last inequality alongside

with ‖𝑊‖∞ ≤ 𝛿2𝑁 implies for all 𝑖, |(𝑌2)𝑖| ≥ 2𝛿2𝑁 − 1. Hence since 𝛿2𝑁 ≥ 2 we can conclude

from the claim that for all 𝑖, |(𝑌2)𝑖| ≥ 3
2
𝛿2𝑁 w.p. at least 1 − 𝑂

(︁
1
𝑛𝑝

)︁
Therefore it suffices to

prove the claim to establish Lemma 5.4.1.

In order to prove the claim, observe that for large enough 𝑝,

P

(︃
𝑛⋃︁

𝑖=1

{|
𝑝∑︁

𝑗=1

𝑋𝑖𝑗𝛽𝑗| < 3𝛿2𝑁}
)︃

≤
𝑛∑︁

𝑖=1

P

(︃
|

𝑝∑︁

𝑗=1

𝑋𝑖𝑗𝛽𝑗| < 3𝛿2𝑁

)︃

=
𝑛∑︁

𝑖=1

∑︁

𝑘∈Z∩[−3𝛿2𝑁 ,3𝛿2𝑁 ]

P

(︃
𝑝∑︁

𝑗=1

𝑋𝑖𝑗𝛽𝑗 = 𝑘

)︃

≤ 𝑛(6𝛿2𝑁 + 1)
𝑐

2𝑁

≤ 7𝑐𝑛𝛿 = 𝑂

(︂
1

𝑛𝑝

)︂
,

where we have used that given 𝛽1 ̸= 0 for 𝑖 ∈ [𝑝] and 𝑘 ∈ Z the event {∑︀𝑝
𝑗=1𝑋𝑖𝑗𝛽𝑗 = 𝑘}

implies that the random variable 𝑋𝑖1 takes a specific value, conditional on the realization of the

remaining elements 𝑋𝑖2, . . . , 𝑋𝑖𝑝 involved in the equations. Therefore by our assumption on the

iid distribution generating the entries of 𝑋, each of these events has probability at most 𝑐/2𝑁 .

Note that the choice of 𝛽1, as opposed to choosing some 𝛽𝑖 with 𝑖 > 1, was arbitrary in the

previous argument. The last inequality uses the assumption 𝛿2𝑁 ≥ 1 and the final convergence
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step is justified from 𝛿 = 𝑂( 1
𝑛2𝑝

) and that 𝑐 is a constant.

Next we use a number-theoretic lemma, which is an extension of a standard result in analytic

number theory according to which

lim
𝑚→+∞

P𝑃,𝑄∼Unif{1,2,...,𝑚},𝑃⊥⊥𝑄 [gcd (𝑃,𝑄) = 1] =
6

𝜋2
,

where 𝑃 ⊥⊥ 𝑄 refers to 𝑃,𝑄 being independent random variables.

Lemma 5.4.2. Suppose 𝑞1, 𝑞2, 𝑞 ∈ Z>0 with 𝑞 → +∞ and max{𝑞1, 𝑞2} = 𝑜(𝑞2). Then

|{(𝑎, 𝑏) ∈ Z2 ∩ ([𝑞1, 𝑞1 + 𝑞]× [𝑞2, 𝑞2 + 𝑞]) : gcd(𝑎, 𝑏) = 1}| = 𝑞2
(︂

6

𝜋2
+ 𝑜𝑞(1)

)︂
.

In other words, if we choose independently one uniform integer in [𝑞1, 𝑞1+𝑞] and another uniform

integer in [𝑞2, 𝑞2 + 𝑞] the probability that these integers are relatively prime approaches 6
𝜋2 , as

𝑞 → +∞.

Proof. We call an integer 𝑛 ∈ Z>0 square-free if it is not divisible by the square of a positive

integer number other than 1. The Mobius function 𝜇 : Z>0 → {−1, 0, 1} is defined to be

𝜇(𝑛) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n is square-free with an even number of prime factors

−1, n is square-free with an odd number of prime factors

0, otherwise

From now on we ease the notation by always referring for this proof to positive integer

variables. A standard property for the Mobius function (see Theorem 263 in [HW75]) states that

for all 𝑛 ∈ Z>0,

∑︁

1≤𝑑≤𝑛,𝑑|𝑛
𝜇(𝑑) =

⎧
⎪⎨
⎪⎩
1, 𝑛 = 1

0, otherwise
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Therefore using the above identity and switching the order of summation we obtain

|(𝑎, 𝑏) ∈ [𝑞1, 𝑞1 + 𝑞]× [𝑞2, 𝑞2 + 𝑞], gcd(𝑎, 𝑏) = 1|

=
∑︁

(𝑎,𝑏)∈[𝑞1,𝑞1+𝑞]×[𝑞2,𝑞2+𝑞]

⎛
⎝ ∑︁

1≤𝑑≤gcd(𝑎,𝑏),𝑑|gcd(𝑎,𝑏)
𝜇(𝑑)

⎞
⎠

=
∑︁

1≤𝑑≤max{𝑞1,𝑞2}+𝑞

⎛
⎝ ∑︁

(𝑎,𝑏)∈[𝑞1,𝑞1+𝑞]×[𝑞2,𝑞2+𝑞],𝑑|gcd(𝑎,𝑏)
𝜇(𝑑)

⎞
⎠ .

Now introducing the change of variables 𝑎 = 𝑘𝑑, 𝑏 = 𝑙𝑑 for some 𝑘, 𝑙 ∈ Z>0 and observing that

the number of integer numbers in an interval of length 𝑥 > 0 are 𝑥+𝑂(1), we obtain

∑︁

1≤𝑑≤max{𝑞1,𝑞2}+𝑞

⎛
⎜⎝

∑︁

𝑞1
𝑑
≤𝑘≤ 𝑞1+𝑞

𝑑
,
𝑞2
𝑑
≤𝑙≤ 𝑞2+𝑞

𝑑

𝜇(𝑑)

⎞
⎟⎠

=
∑︁

1≤𝑑≤max{𝑞1,𝑞2}+𝑞

[︂(︁𝑞
𝑑
+𝑂(1)

)︁2
𝜇(𝑑)

]︂

=
∑︁

1≤𝑑≤max{𝑞1,𝑞2}+𝑞

[︂(︁𝑞
𝑑

)︁2
𝜇(𝑑) +𝑂

(︁𝑞
𝑑

)︁
𝜇(𝑑) +𝑂(1)𝜇(𝑑)

]︂

Now using |𝜇(𝑑)| ≤ 1 for all 𝑑 ∈ Z>0, for 𝑛 ∈ Z>0,

𝑛∑︁

𝑑=1

1

𝑑
= 𝑂(log 𝑛)

and that by Theorem 287 in [HW75] for 𝑛 ∈ Z>0,

𝑛∑︁

𝑑=1

𝜇(𝑑)

𝑑2
=

1

𝜁(2)
+ 𝑜𝑛(1) =

6

𝜋2
+ 𝑜𝑛(1)

we conclude that the last quantity equals

𝑞2
(︂

6

𝜋2
+

1

𝑞
𝑂(log(max{𝑞1, 𝑞2}+ 𝑞)) +

max{𝑞1, 𝑞2}+ 𝑞

𝑞2
+ 𝑜𝑞(1)

)︂
.

Recalling the assumption 𝑞1, 𝑞2 = 𝑜(𝑞2) the proof is complete.
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Claim 5.4.3. The greatest common divisor of the coordinates of 𝛽 := 𝛽* + 𝑍 equals to 1, w.p.

1− exp (−Θ(𝑝)) with respect to the randomness of 𝑍.

Proof. Each coordinate of 𝛽 is a uniform and independent choice of a positive integer from an

interval of length 2𝑅̂+log 𝑝 with starting point in [𝑅̂−𝑅+1, 𝑅̂+𝑅+1], depending on the value of

𝛽*
𝑖 ∈ [−𝑅,𝑅]. Note though that Lemma 5.4.2 applies for arbitrary 𝑞1, 𝑞2 ∈ [𝑅̂−𝑅+1, 𝑅̂+𝑅+1]

and 𝑞 = 2𝑅̂+ log 𝑝 since 𝑞1, 𝑞2 = 𝑜(𝑞2) and 𝑞 → +∞. from this we conclude that the probability

any two specific coordinates of 𝛽 have greatest common divisor 1 approaches 6
𝜋2 , as 𝑝 → +∞.

But the probability the greatest common divisor of all the coordinates is not one implies that

the greatest common divisor of the 2𝑖− 1 and 2𝑖 coordinate is not one, for every 𝑖 = 1, 2, . . . ⌊𝑝
2
⌋.

Hence using the independence among the values of the coordinates, we conclude that the greatest

common divisor of the coordinates of 𝛽 is not one with probability at most

(︂
1− 6

𝜋2
+ 𝑜𝑝(1)

)︂⌊ 𝑝
2
⌋
= exp (−Θ(𝑝)) .

Given a vector 𝑧 ∈ R2𝑛+𝑝, define 𝑧𝑛+1:𝑝 := (𝑧𝑛+1, . . . , 𝑧𝑛+𝑝)
𝑡.

Claim 5.4.4. The outcome of Step 5 of the algorithm, 𝑧, satisfies

∙ ‖𝑧‖2 < 𝑚

∙ 𝑧𝑛+1:𝑛+𝑝 = 𝑞𝛽, for some 𝑞 ∈ Z*, w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
.

Proof. Call ℒ𝑚the lattice generated by the columns of the (2𝑛 + 𝑝) × (2𝑛 + 𝑝) integer-valued

matrix 𝐴𝑚 defined in the algorithm; that is ℒ𝑚 := {𝐴𝑚𝑧|𝑧 ∈ Z2𝑛+𝑝}. Notice that as 𝑌2 is nonzero

at every coordinate, the lattice ℒ𝑚 is full-dimensional and the columns of 𝐴𝑚 define a basis for

ℒ𝑚. Finally, an important vector in ℒ𝑚 for our proof is 𝑧0 ∈ ℒ𝑚 which is defined for 1𝑛 ∈ Z𝑛

the all-ones vector as

𝑧0 := 𝐴𝑚

⎡
⎢⎢⎢⎣

𝛽

1𝑛

𝑊1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0𝑛×1

𝛽

𝑊1

⎤
⎥⎥⎥⎦ ∈ ℒ𝑚. (5.5)
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Consider the following optimization problem on ℒ𝑚, known as the shortest vector problem,

(𝒮2) min ‖𝑧‖2
s.t. 𝑧 ∈ ℒ𝑚,

If 𝑧* is the optimal solution of (𝒮2) we obtain

‖𝑧*‖2 ≤ ‖𝑧0‖2 =
√︁
‖𝛽‖22 + ‖𝑊1‖22 ≤ ‖𝛽‖∞

√
𝑝+ ‖𝑊1‖∞

√
𝑛.

and therefore given our assumptions on 𝛽,𝑊

‖𝑧*‖2 ≤
(︁
3𝑅̂ + log 𝑝

)︁√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛.

Using that 𝑅̂ ≥ 1 and a crude bound this implies

‖𝑧*‖2 ≤ 4𝑝
(︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︁
.

The LLL guarantee and the above observation imply that

‖𝑧‖2 ≤ 2
2𝑛+𝑝

2 ‖𝑧*‖2 ≤ 2
2𝑛+𝑝

2
+2𝑝

(︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︁
:= 𝑚0. (5.6)

Now recall that 𝑊̂∞ ≥ max{‖𝑊‖∞, 1}. Since𝑚 ≥ 2𝑛+
𝑝
2
+3𝑝

(︁
𝑅̂
√
𝑝+ 𝑊̂∞

√
𝑛
)︁
, we obtain𝑚 > 𝑚0

and hence ‖𝑧‖2 < 𝑚. This establishes the first part of the Claim.

For the second part, given (5.6) and that 𝑧 is non-zero it suffices to establish that under the

conditions of our Theorem there is no non-zero vector in ℒ𝑚∖{𝑧 ∈ ℒ𝑚|𝑧𝑛+1:𝑛+𝑝 = 𝑞𝛽, 𝑞 ∈ Z*} with

𝐿2 norm less than 𝑚0, w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
. By construction of the lattice for any 𝑧 ∈ ℒ𝑚 there exists

an 𝑥 ∈ Z2𝑛+𝑝 such that 𝑧 = 𝐴𝑚𝑥. We decompose 𝑥 = (𝑥1, 𝑥2, 𝑥3)
𝑡 where 𝑥1 ∈ Z𝑝, 𝑥2, 𝑥3 ∈ Z𝑛. It

must be true

𝑧 =

⎡
⎢⎢⎢⎣

𝑚
(︀
𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 + 𝑥3

)︀

𝑥1

𝑥3

⎤
⎥⎥⎥⎦ .

Note that 𝑥1 = 𝑧𝑛+1:𝑛+𝑝. We use this decomposition of every 𝑧 ∈ ℒ𝑚 to establish our result.
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We first establish that for any lattice vector 𝑧 ∈ ℒ𝑚 the condition ‖𝑧‖2 ≤ 𝑚0 implies neces-

sarily

𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 + 𝑥3 = 0. (5.7)

and in particular 𝑧 = (0, 𝑥1, 𝑥3). If not, as it is an integer-valued vector, ‖𝑋𝑥1−Diag𝑛×𝑛(𝑌 )𝑥2+

𝑥3||2 ≥ 1 and therefore

𝑚 ≤ 𝑚‖𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 + 𝑥3‖2 ≤ ‖𝑧‖2 ≤ 𝑚0,

a contradiction as 𝑚 > 𝑚0. Hence, necessarily equation (5.7) and 𝑧 = (0, 𝑥1, 𝑥3) hold.

Now we claim that it suffices to show that there is no non-zero vector in ℒ𝑚∖{𝑧 ∈ ℒ𝑚|𝑧𝑛+1:𝑛+𝑝 =

𝑞𝛽, 𝑞 ∈ Z} with 𝐿2 norm less than 𝑚0, w.p. 1− 𝑂
(︁

1
𝑛𝑝

)︁
. Note that in this claim the coefficient

𝑞 is allowed to take the zero value as well. The reason it suffices to prove this weaker state-

ment is that any non-zero 𝑧 ∈ ℒ𝑚 with ‖𝑧‖2 ≤ 𝑚0 necessarily satisies that 𝑧𝑛+1:𝑛+𝑝 ̸= 0 w.p.

1−𝑂
(︁

1
𝑛𝑝

)︁
and therefore the case 𝑞 = 0 is not possible w.p. 1−𝑂

(︁
1
𝑛𝑝

)︁
. To see this, we use the

decomposition and recall that 𝑥1 = 𝑧𝑛+1:𝑛+𝑝. Therefore it suffices to establish that there is no

triplet 𝑥 = (0, 𝑥2, 𝑥3)
𝑡 ∈ Z2𝑛+𝑝 with 𝑥2, 𝑥3 ∈ Z𝑛 for which the vector 𝑧 = 𝐴𝑚𝑥 ∈ ℒ𝑚 is non-zero

and ‖𝑧‖2 ≤ 𝑚0, w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
. To prove this, we consider such a triplet 𝑥 = (0, 𝑥2, 𝑥3)

and will upper bound the probability of its existence. From equation (5.7) it necessarily holds

Diag𝑛×𝑛(𝑌 )𝑥2 = 𝑥3, or equivalently

for all 𝑖 ∈ [𝑛], 𝑌𝑖(𝑥2)𝑖 = (𝑥3)𝑖. (5.8)

From Lemma 5.4.1 and (5.8) we obtain that

for all 𝑖 ∈ [𝑛],
3

2
𝛿2𝑁 |(𝑥2)𝑖| ≤ |(𝑥3)𝑖| (5.9)

w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
. Since 𝑧 is assumed to be non-zero and 𝑧 = 𝐴𝑚𝑥 = (0, 0, 𝑥3) there exists 𝑖 ∈ [𝑛]

with (𝑥3)𝑖 ̸= 0. Using (5.8) we obtain (𝑥2)𝑖 ̸= 0 as well. Therefore for this value of 𝑖 it must be

simultaneously true that |(𝑥2)𝑖| ≥ 1 and |(𝑥3)𝑖| ≤ 𝑚0. Plugging these inequalities to (5.9) for
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this value of 𝑖, we conclude that it necessarily holds that

3

2
𝛿2𝑁 ≤ 𝑚0

Using the definition of 𝛿, 𝛿 = 1
𝑛2𝑝2

, we conclude that it must hold 1
𝑛2𝑝2

2𝑁 ≤ 𝑚0, or

𝑁 ≤ 2 log(𝑛𝑝) + log𝑚0.

Plugging in the value of 𝑚0 we conclude that for sufficiently large 𝑝,

𝑁 ≤ 2 log(𝑛𝑝) +
2𝑛+ 𝑝

2
+ log 𝑝+ log

(︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︁
.

This can be checked to contradict directly our hypothesis (5.2) and the proof of the claim is

complete.

Therefore using the decomposition of every 𝑧 ∈ ℒ𝑚, equation (5.7) and the claim in the last

paragraph it suffices to establish that w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
there is no triplet (𝑥1, 𝑥2, 𝑥3) with

(a) 𝑥1 ∈ Z𝑝, 𝑥2, 𝑥3 ∈ Z𝑛;

(b) ‖𝑥1‖22 + ‖𝑥3‖22 ≤ 𝑚0;

(c) 𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 − 𝑥3 = 0;

(d) ∀𝑞 ∈ Z : 𝑥1 ̸= 𝑞𝛽.

We first claim that any such triplet (𝑥1, 𝑥2, 𝑥3) satifies w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁

‖𝑥2‖∞ = 𝑂(
𝑚0𝑛

2𝑝3

𝛿
).

To see this let 𝑖 = 1, 2, . . . , 𝑛 and denote by 𝑋(𝑖) the 𝑖-th row of 𝑋. We have because of (c),

0 = (𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 − 𝑥3)𝑖 = ⟨𝑋(𝑖), 𝑥1⟩ − 𝑌𝑖(𝑥2)𝑖 − (𝑥3)𝑖,
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and therefore by triangle inequality

|𝑌𝑖(𝑥2)𝑖| = |⟨𝑋(𝑖), 𝑥1⟩ − (𝑥3)𝑖| ≤ |⟨𝑋(𝑖), 𝑥1⟩|+ |(𝑥3)𝑖|. (5.10)

But observe that for all 𝑖 ∈ [𝑛], ‖𝑋(𝑖)‖∞ ≤ ‖𝑋‖∞ ≤ (𝑛𝑝)22𝑁 w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
. Indeed using a

union bound, Markov’s inequality and our assumption on the distribution 𝒟 of the entries of 𝑋,

P
(︀
‖𝑋‖∞ > (𝑛𝑝)22𝑁

)︀
≤ 𝑛𝑝P

(︀
|𝑋11| > (𝑛𝑝)22𝑁

)︀
≤ 1

2𝑁𝑛𝑝
E[|𝑋11|] ≤

𝐶

𝑛𝑝
= 𝑂

(︂
1

𝑛𝑝

)︂
,

which establishes the result. Using this, Lemma 5.4.1 and (5.10) we conclude that for all 𝑖 ∈ [𝑛]

w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁

|(𝑥2)𝑖|
3

2
𝛿2𝑁 ≤ (2𝑁𝑝(𝑛𝑝)2 + 1)𝑚0

which in particular implies

|(𝑥2)𝑖| ≤ 𝑂(
𝑚0𝑛

2𝑝3

𝛿
),

w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
.

Now we claim that for any such triplet (𝑥1, 𝑥2, 𝑥3) it also holds

P
(︀
𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 − 𝑥3 = 0

)︀
≤ 𝑐𝑛

2𝑛𝑁
. (5.11)

To see this note that for any 𝑖 ∈ [𝑛] if 𝑋(𝑖) is the 𝑖-th row of 𝑋 because 𝑌 = 𝑋𝛽 +𝑊 it holds

𝑌𝑖 = ⟨𝑋(𝑖), 𝛽⟩+𝑊𝑖. In particular, 𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 − 𝑥3 = 0 implies for all 𝑖 ∈ [𝑛],

⟨𝑋(𝑖), 𝑥1⟩ − 𝑌𝑖(𝑥2)𝑖 = (𝑥3)𝑖

or ⟨𝑋(𝑖), 𝑥1⟩ −
(︀
⟨𝑋(𝑖), 𝛽⟩+𝑊𝑖

)︀
(𝑥2)𝑖 = (𝑥3)𝑖

or ⟨𝑋(𝑖), 𝑥1 − (𝑥2)𝑖𝛽⟩ = (𝑥3)𝑖 − (𝑥2)𝑖𝑊𝑖

Hence using independence between rows of 𝑋,

P
(︀
𝑋𝑥1 −Diag𝑛×𝑛(𝑌 )𝑥2 − 𝑥3 = 0

)︀
=

𝑛∏︁

𝑖=1

P
(︀
⟨𝑋(𝑖), 𝑥1 − (𝑥2)𝑖𝛽⟩ = (𝑥3)𝑖 − (𝑥2)𝑖𝑊𝑖

)︀
(5.12)
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But because of (d) for all 𝑖, 𝑥1 − (𝑥2)𝑖𝛽 ̸= 0. In particular, ⟨𝑋(𝑖), 𝑥1 − (𝑥2)𝑖𝛽⟩ = (𝑥3)𝑖 − (𝑥2)𝑖𝑊𝑖

constraints at least one of the entries of 𝑋(𝑖) to get a specific value with respect to the rest of

the elements of the row which has probability at most 𝑐
2𝑁

by the independence assumption on

the entries of 𝑋. This observation with (5.12) implies (5.11).

Now, we establish that indeed there are no such triplets, w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
. Recall the

standard fact that for any 𝑟 > 0 there are at most 𝑂(𝑟𝑛) vectors in Z𝑛 with 𝐿∞-norm at

most 𝑟. Using this, (5.11) and a union bound over all the integer vectors (𝑥1, 𝑥2, 𝑥3) with

‖𝑥1‖22 + ‖𝑥3‖22 ≤ 𝑚0, ‖𝑥2‖∞ = 𝑂(𝑚0𝑛2𝑝3

𝛿
) we conclude that the probability that there exist a

triplet (𝑥1, 𝑥2, 𝑥3) satisfying (a), (b), (c), (d) is at most of the order

(
𝑚0𝑛

2𝑝3

𝛿
)𝑛𝑚𝑛+𝑝

0

[︂
𝑐𝑛

2𝑛𝑁

]︂
.

Plugging in the value of 𝑚0 we conclude that the probability is at most of the order

2
1
2
(2𝑛+𝑝)2+𝑛 log(𝑐𝑛2𝑝3)+𝑛 log( 1

𝛿
)+(2+log 𝑝)(2𝑛+𝑝)

[︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
]︁2𝑛+𝑝

2𝑛𝑁
.

Now recalling that 𝛿 = 1
𝑛2𝑝2

we obtain log(1
𝛿
) = 2 log(𝑛𝑝) and therefore the last bound becomes

at most of the order

2
1
2
(2𝑛+𝑝)2+5𝑛 log(𝑐𝑛𝑝)+(2+log 𝑝)(2𝑛+𝑝)

[︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
]︁2𝑛+𝑝

2𝑛𝑁
.

We claim that the last quantity is 𝑂
(︁

1
𝑛𝑝

)︁
because of our assumption (5.2). Indeed the logarithm

of the above quantity equals

1

2
(2𝑛+ 𝑝)

(︁
2𝑛+ 𝑝+ 4 + 2 log 𝑝+ 2 log

(︁
𝑅̂
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︁)︁

+ 5𝑛 log(𝑐𝑛𝑝)− 𝑛𝑁.

Using that 𝑅̂ ≥ 1 this is upper bounded by

1

2
(2𝑛+ 𝑝)

(︀
2𝑛+ 𝑝+ 10 log

(︀
𝑅
√
𝑝+ (‖𝑊‖∞ + 1)

√
𝑛
)︀)︀

+ 5𝑛 log(𝑐𝑛𝑝)− 𝑛𝑁
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which by our assumption (5.2) is indeed less than −𝑛 log(𝑛𝑝) < − log(𝑛𝑝), implying the desired

bound. This completes the proof of claim 5.4.4.

Now we prove Theorem 5.2.1. First with respect to time complexity, it suffices to analyze Step

5 and Step 6. For step 5 we have from [LLL82] that it runs in time polynomial in 𝑛, 𝑝, log ‖𝐴𝑚‖∞
which indeed is polynomial in 𝑛, 𝑝,𝑁 and log 𝑅̂, log 𝑊̂ . For step 6, recall that the Euclid algo-

rithm to compute the greatest common divisor of 𝑝 numbers with norm bounded by ‖𝑧‖∞ takes

time which is polynomial in 𝑝, log ‖𝑧‖∞. But from Claim 5.4.4 we have that ‖𝑧‖∞ < 𝑚 and

therefore the time complexity is polynomial in 𝑝, log𝑚 and therefore again polynomial in 𝑛, 𝑝,𝑁

and log 𝑅̂, log 𝑊̂ .

Finally we prove that the ELO algorithm outputs exactly 𝛽* w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
. We obtain

from Claim 5.4.4 that 𝑧𝑛+1:𝑛+𝑝 = 𝑞𝛽 for 𝛽 = 𝛽*+𝑍 and some 𝑞 ∈ Z* w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
. We claim

that the 𝑔 computed in Step 6 is this non-zero integer 𝑞 w.h.p. To see it notice that from Claim

5.4.3 gcd(𝛽) = 1 w.p. 1 − exp(−Θ(𝑝)) = 1 − 𝑂
(︁

1
𝑛𝑝

)︁
and therefore the 𝑔 computed in Step 6

satisfies w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
,

𝑔 = gcd(𝑧𝑛+1:𝑛+𝑝) = gcd(𝑞𝛽) = 𝑞gcd(𝛽) = 𝑞.

Hence we obtain w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
.

𝑧𝑛+1:𝑛+𝑝 = 𝑔𝛽 = 𝑔 (𝛽* + 𝑍)

or w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁

𝛽* =
1

𝑔
𝑧𝑛+1:𝑛+𝑝 − 𝑍,

which implies based on Step 7 and the fact that 𝑔 = 𝑞 ̸= 0 that indeed the output of the algorithm

is 𝛽* w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
. The proof of Theorem 5.2.1 is complete.
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5.5 Proofs of Theorems 5.2.5.A and 5.2.5.B

Proof of Theorem 5.2.5.A

Proof. We first analyze the algorithm with respect to time complexity. It suffices to ana-

lyze step 2 as step 1 runs clearly in polynomial time 𝑁, 𝑛, 𝑝. Step 2 runs the ELO algo-

rithm. From Theorem 5.2.1 we obtain that the ELO algorithm terminates in polynomial time in

𝑛, 𝑝,𝑁, log
(︁
𝑄̂𝑅̂
)︁
, log

(︁
2𝑄̂
(︁
2𝑁𝑊̂ + 𝑅̂𝑝

)︁)︁
. As the last quantity is indeed polynomial in 𝑛, 𝑝,𝑁

and log 𝑅̂, log 𝑄̂, log 𝑊̂ , we are done.

Now we prove that 𝛽* = 𝛽*, w.p. 1 − 𝑂
(︁

1
𝑛𝑝

)︁
. Notice that it suffices to show that the

output of Step 3 of the LBR algorithm is exactly 𝑄̂𝛽*, as then step 4 gives 𝛽* = 𝑄𝛽*

𝑄
= 𝛽* w.p.

1−𝑂
(︁

1
𝑛𝑝

)︁
.

We first establish that

2𝑁𝑄̂𝑌𝑁 = 2𝑁𝑋𝑁𝑄̂𝛽
* +𝑊0 (5.13)

for some 𝑊0 ∈ Z𝑛 with ‖𝑊0‖∞+1 ≤ 2𝑄̂
(︀
2𝑁𝜎 +𝑅𝑝

)︀
. We have 𝑌 = 𝑋𝛽*+𝑊 , with ‖𝑊‖∞ ≤ 𝜎.

From the way 𝑌𝑁 is defined, ‖𝑌 − 𝑌𝑁‖∞ ≤ 2−𝑁 . Hence for 𝑊 ′ = 𝑊 + 𝑌𝑁 − 𝑌 which satisfies

‖𝑊 ′‖∞ ≤ 2−𝑁 + 𝜎 we obtain

𝑌𝑁 = 𝑋𝛽* +𝑊 ′.

Similarly since ‖𝑋 −𝑋𝑁‖∞ ≤ 2−𝑁 and ‖𝛽*‖∞ ≤ 𝑅 we obtain ‖ (𝑋 −𝑋𝑁) 𝛽
*‖∞ ≤ 2−𝑁𝑅𝑝, and

therefore for 𝑊 ′′ = 𝑊 ′ + (𝑋 −𝑋𝑁) 𝛽
* which satisfies ‖𝑊 ′′‖∞ ≤ 2−𝑁 + 𝜎 + 2−𝑁𝑟𝑝 we obtain,

𝑌𝑁 = 𝑋𝑁𝛽
* +𝑊 ′′

or equivalently

2𝑁𝑌𝑁 = 2𝑁𝑋𝑁𝛽
* +𝑊 ′′′,

where 𝑊 ′′′ := 2𝑁𝑊 ′′ which satisfies ‖𝑊 ′′′‖∞ ≤ 1 + 2𝑁𝜎 +𝑅𝑝. Multiplying with 𝑄̂ we obtain

2𝑁𝑄̂𝑌𝑁 = 2𝑁𝑋𝑁

(︁
𝑄̂𝛽*

)︁
+𝑊0,

where 𝑊0 := 𝑄̂𝑊 ′′′ which satisfies ‖𝑊0‖∞ ≤ 𝑄̂
(︀
1 + 2𝑁𝜎 +𝑅𝑝

)︀
≤ 2𝑄̂

(︀
2𝑁𝜎 +𝑅𝑝

)︀
− 1. This
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establishes equation (5.13).

We now apply Theorem 5.2.1 for 𝑌 our vector 𝑄̂2𝑁𝑌𝑁 , 𝑋 our vector 2𝑁𝑋𝑁 , 𝛽* our vector

𝑄̂𝛽*, 𝑊 our vector 𝑊0, 𝑅 our 𝑄̂𝑅, 𝑅̂ our 𝑄̂𝑅̂, 𝑊̂ our quantity 2𝑄̂
(︀
2𝑁𝜎 +𝑅𝑝

)︀
and finally 𝑁

our truncation level 𝑁 .

We fist check the assumption (1), (2), (3) of Theorem 5.2.1. We start with assumption (1).

From the definition of 𝑋𝑁 we have that 2𝑁𝑋𝑁 ∈ Z𝑛×𝑝 and that for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝],

|(2𝑁𝑋𝑁)𝑖𝑗| ≤ 2𝑁 |𝑋𝑖𝑗|.

Therefore for 𝐶 = E[|𝑋1,1|] <∞ and arbitrary 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝],

E[|(2𝑁𝑋𝑁)𝑖𝑗|] ≤ 2𝑁E[|𝑋𝑖𝑗|] = 𝐶2𝑁 ,

as we wanted. Furthermore, if 𝑓 is the density function of the distribution 𝒟 of the entries of 𝑋,

recall ‖𝑓‖∞ ≤ 𝑐, by our hypothesis. Now observe for arbitrary 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝],

P
(︀
(2𝑁𝑋𝑁)𝑖𝑗 = 𝑘

)︀
= P

(︂
𝑘

2𝑁
≤ 𝑋𝑖𝑗 ≤

𝑘 + 1

2𝑁

)︂
=

∫︁ 𝑘+1

2𝑁

𝑘

2𝑁

𝑓(𝑢)𝑑𝑢 ≤ ‖𝑓‖∞
∫︁ 𝑘+1

2𝑁

𝑘

2𝑁

𝑑𝑢 ≤ 𝑐

2𝑁
.

This completes the proof that 2𝑁𝑋𝑁 satisfies assumption (1) of Theorem 5.2.1. For assumption

(2), notice that 𝑄̂𝛽* is integer valued, as 𝑄̂ is assumed to be a mutliple of 𝑄 and 𝛽* satisfies

𝑄-rationality. Furthermore clearly

‖𝑄̂𝛽*‖∞ ≤ 𝑄̂𝑅.

For the noise level we have by (5.13) 𝑊0 = 2𝑁𝑄̂𝑌𝑁 −2𝑁𝑋𝑁𝑄̂𝛽
* and therefore 𝑊0 ∈ Z𝑛 as all the

quantities 2𝑁𝑄̂𝑌𝑁 , 2𝑁𝑋𝑁 and 𝑄̂𝛽* are integer-valued. Finally, Assumption (3) follows exactly

from equation (5.13).

Now we check the parameters assumptions of Theorem 5.2.1. We clearly have

𝑄̂𝑅 ≤ 𝑄̂𝑅̂

and

‖𝑊‖∞ ≤ 2𝑄̂
(︀
2𝑁𝜎 +𝑅𝑝

)︀
= 𝑊̂ .
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The last step consists of establishing the relation (5.2) of Theorem 5.2.5.A. Plugging in our

parameter choice it suffices to prove

𝑁 >
(2𝑛+ 𝑝)

2

(︁
2𝑛+ 𝑝+ 10 log

(︁
𝑄̂𝑅̂

√
𝑝+ 2𝑄̂

(︀
2𝑁𝜎 +𝑅𝑝

)︀√
𝑛
)︁)︁

+ 6𝑛 log((1 + 𝑐)𝑛𝑝).

Using that 𝑄̂𝑅√𝑝 ≤ 𝑄̂
(︁
2𝑁𝜎 + 𝑅̂𝑝

)︁√
𝑛 and 𝑅 ≤ 𝑅̂ it suffices to show after elementary algebraic

manipulations that

𝑁 >
(2𝑛+ 𝑝)

2

(︁
2𝑛+ 𝑝+ 10 log 3 + 10 log 𝑄̂+ 10 log

(︁
2𝑁𝜎 + 𝑅̂𝑝

)︁
+ 5 log 𝑛

)︁
+ 6𝑛 log((1 + 𝑐)𝑛𝑝).

Using now that by elementary considerations

(2𝑛+ 𝑝)

2
(10 log 3 + 5 log 𝑛) + 4𝑛 log((1 + 𝑐)𝑛𝑝) <

(2𝑛+ 𝑝)

2
[20 log(3 (1 + 𝑐)𝑛𝑝)] for all 𝑛 ∈ Z>0,

it suffices to show

𝑁 >
(2𝑛+ 𝑝)

2

(︁
2𝑛+ 𝑝+ 10 log 𝑄̂+ 10 log

(︁
2𝑁𝜎 + 𝑅̂𝑝

)︁
+ 20 log(3 (1 + 𝑐)𝑛𝑝)

)︁
,

which is exactly assumption (5.3).

Hence, the proof that we can apply Theorem 5.2.1 is complete. Applying it we conclude that

w.p. 1−𝑂
(︁

1
𝑛𝑝

)︁
the output of LBR algorithm at step 3 is 𝑄̂𝛽*, as we wanted.

Proof of Theorem 5.2.5.B

By using a standard union bound and Markov inequality we have

P (‖𝑊‖∞ ≤ √
𝑛𝑝𝜎) ≥ 1−

𝑛∑︁

𝑖=1

P (|𝑊𝑖| >
√
𝑛𝑝𝜎) ≥ 1− 𝑛

E [𝑊 2
1 ]

𝑛𝑝𝜎2
≥ 1− 1

𝑝
.

Therefore, conditional on the high probability event ‖𝑊‖∞ ≤ √
𝑛𝑝𝜎, we can apply Theorem

5.2.5.A with √
𝑛𝑝𝜎 instead of 𝜎 and conclude the result.
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5.6 Rest of the Proofs

Proof of Proposition 5.2.6

Proof. If we show that we can apply Theorem 5.2.5.B, the result follows. Since the model

assumptions are identical we only need to check the parameter assumptions of Theorem 5.2.5.B.

First note that we assume 𝑅̂ = 𝑅, we clearly have for the noise 𝜎 ≤ 𝑊∞ = 1 and finally 𝑄̂ = 𝑄.

Now for establishing 5.4, we first notice that since 𝑁 ≤ log
(︀
1
𝜎

)︀
is equivalent to 2𝑁𝜎 ≤ 1, we

obtain 2𝑁𝜎
√
𝑛𝑝+𝑅𝑝 ≤ 2log(𝑛𝑝)+log(𝑅𝑝). Therefore it suffices

𝑁 >
(2𝑛+ 𝑝)2

2𝑛
+ 22

2𝑛+ 𝑝

𝑛
log(3(1 + 𝑐)𝑛𝑝) +

2𝑛+ 𝑝

𝑛
log(𝑅𝑄)

Now since 𝑝 ≥ 300
𝜖
log
(︀
300
𝑐𝜖

)︀
it holds

22(2𝑛+ 𝑝) log(3(1 + 𝑐)𝑛𝑝) <
𝜖

2

(2𝑛+ 𝑝)2

2
, (5.14)

for all 𝑛 ∈ Z>0.Indeed, this can be equivalently written as

22 <
𝜖

4

2𝑛+ 𝑝

log(3(1 + 𝑐)𝑛𝑝)
.

But 2𝑛+𝑝
log(3(1+𝑐)𝑛𝑝)

increases with respect to 𝑛 ∈ Z>0 and therefore it is minimized for 𝑛 = 1. In

particular it suffices to have

22 <
𝜖

4

2 + 𝑝

log(3(1 + 𝑐)𝑝)
,

which can be checked to be true for 𝑝 ≥ 300
𝜖
log
(︁

300
(1+𝑐)𝜖

)︁
. Therefore using (5.14) it suffices

𝑁 > (1 +
𝜖

2
)
(2𝑛+ 𝑝)2

2𝑛
+

2𝑛+ 𝑝

𝑛
log(𝑅𝑄).
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But observe

𝑁 ≥ (1 + 𝜖)

[︂
𝑝2

2𝑛
+ 2𝑛+ 2𝑝+ (2 +

𝑝

𝑛
) log (𝑅𝑄)

]︂

= (1 + 𝜖)

[︂
(2𝑛+ 𝑝)2

2𝑛
+ (

2𝑛+ 𝑝

𝑛
) log (𝑅𝑄)

]︂

> (1 +
𝜖

2
)
(2𝑛+ 𝑝)2

2
+ (2𝑛+ 𝑝) log(𝑅𝑄).

The proof of Proposition 5.2.6 is complete.

Proof of Proposition 5.2.7

Proof. We first establish that ‖𝑋‖∞ ≤ (𝑛𝑝)2 whp as 𝑝 → +∞. By a union bound and Markov

inequality

P
(︂

max
𝑖∈[𝑛],𝑗∈[𝑝]

|𝑋𝑖𝑗| > (𝑛𝑝)2
)︂

≤ 𝑛𝑝P
(︀
|𝑋11| > (𝑛𝑝)2

)︀
≤ 1

𝑛𝑝
E[|𝑋11|] = 𝑜(1).

Therefore with high probability ‖𝑋‖∞ ≤ (𝑛𝑝)2. Consider the set 𝑇 (𝑅,𝑄) of all the vectors

𝛽* ∈ [−𝑅,𝑅]𝑝 satisfying the 𝑄-rationality assumption. The entries of these vectors are of the

form 𝑎
𝑄

for some 𝑎 ∈ Z with |𝑎| ≤ 𝑅𝑄. In particular |𝑇 (𝑅,𝑄)| = (2𝑄𝑅 + 1)𝑝. Now because the

entries of 𝑋 are continuously distributed, all 𝑋𝛽* with 𝛽* ∈ 𝑇 (𝑅,𝑄) are distinct with probability

1. Furthermore by the above each one of them has 𝐿2 norm satisfies

‖𝑋𝛽*‖22 ≤ 𝑛𝑝2‖𝑋‖2∞‖𝛽*‖2∞ ≤ 𝑅2𝑛5𝑝6 < 𝑅2(𝑛𝑝)6,

w.h.p. as 𝑝→ +∞.

Now we establish the proposition by contradiction. Suppose there exist a recovery mechanism

that can recover w.h.p. any such vector 𝛽* after observing 𝑌 = 𝑋𝛽* +𝑊 ∈ R𝑛, where 𝑊 has

𝑛 iid 𝑁(0, 𝜎2) entries. In the language of information theory such a recovery guarantee implies

that the Gaussian channel with power constraint 𝑅2(𝑛𝑝)6 and noise variance 𝜎2 needs to have

capacity at least
log |𝑇 (𝑅,𝑄)|

𝑛
=
𝑝 log (2𝑄𝑅 + 1)

𝑛
.
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On the other hand, the capacity of this Gaussian channel with power ℛ and noise variance Σ2 is

known to be equal to 1
2
log
(︀
1 + ℛ

Σ2

)︀
(see for example Theorem 10.1.1 in [CT06]). In particular

our Gaussian communication channel has capacity 1
2
log
(︁
1 + 𝑅2(𝑛𝑝)6

𝜎2

)︁
.From this we conclude

𝑝 log (2𝑄𝑅 + 1)

𝑛
≤ 1

2
log

(︂
1 +

𝑅2(𝑛𝑝)6

𝜎2

)︂
,

which implies

𝜎2 ≤ 𝑅2(𝑛𝑝)6
1

2
2𝑝 log(2𝑄𝑅+1)

𝑛 − 1
,

or

𝜎 ≤ 𝑅(𝑛𝑝)3
(︁
2

2𝑝 log(2𝑄𝑅+1)
𝑛 − 1

)︁− 1
2
,

which completes the proof of the Proposition.

Proof of Proposition 5.2.8

Proof. Based on Proposition 5.2.6 the amount of noise that can be tolerated is

2
−(1+𝜖)

[︂
𝑝2

2𝑛
+2𝑛+2𝑝+(2+ 𝑝

𝑛
) log(𝑅𝑄)

]︂
,

for an arbitrary 𝜖 > 0. Since 𝑛 = 𝑜(𝑝) and 𝑅𝑄 = 2𝜔(𝑝) this simplifies asymptotically to

2−(1+𝜖)[ 𝑝𝑛 log(𝑅𝑄)],

for an arbitrary 𝜖 > 0. Since 𝜎 < 𝜎1+𝜖
0 , we conclude that LBR algorithms is succesfully working

in that regime.

For the first part it suffices to establish that under our assumptions for 𝑝 sufficiently large,

𝜎1−𝜖
0 > 𝑅(𝑛𝑝)3

(︁
2

2𝑝 log(2𝑄𝑅+1)
𝑛 − 1

)︁− 1
2
.
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Since 𝑛 = 𝑜( 𝑝
log 𝑝

) implies 𝑛 = 𝑜(𝑝) we obtain that for 𝑝 sufficiently large,

2
2𝑝 log(2𝑄𝑅+1)

𝑛 − 1 > 22(1−
1
2
𝜖)

𝑝 log(2𝑄𝑅+1)
𝑛

which equivalently gives

(︁
2

2𝑝 log(2𝑄𝑅+1)
𝑛 − 1

)︁− 1
2
< 2−(1− 1

2
𝜖)

𝑝 log(2𝑄𝑅+1)
𝑛

or

𝑅(𝑛𝑝)3
(︁
2

2𝑝 log(2𝑄𝑅+1)
𝑛 − 1

)︁− 1
2
< 𝑅(𝑛𝑝)32−(1− 1

2
𝜖)

𝑝 log(2𝑄𝑅+1)
𝑛 .

Therefore it suffices to show

𝑅(𝑛𝑝)32−(1− 1
2
𝜖)

𝑝 log(2𝑄𝑅+1)
𝑛 ≤ 𝜎1−𝜖

0 = 2−(1−𝜖)
𝑝 log(𝑄𝑅)

𝑛

or equivalently by taking logarithms and performing elementary algebraic manipulations,

𝑛 log𝑅 + 3𝑛 log(𝑛𝑝) ≤
(︁
1− 𝜖

2

)︁
𝑝 log(2 +

1

𝑅𝑄
) +

𝜖

2
𝑝 log𝑅𝑄.

The condition 𝑛 = 𝑜( 𝑝
log 𝑝

) implies for sufficiently large 𝑝, 𝑛 log(𝑛𝑝) ≤ 𝜖
4
𝑝 and 𝑛 log𝑅 ≤ 𝜖

2
𝑝 log𝑄𝑅.

Using both of these inequalities we conclude that for sufficiently large 𝑝,

𝑛 log𝑅 + 3𝑛 log(𝑛𝑝) ≤ 𝜖

2
𝑝 log𝑄𝑅

≤
(︁
1− 𝜖

2

)︁
𝑝 log(2 +

1

𝑅𝑄
) +

𝜖

2
𝑝 log𝑅𝑄.

This completes the proof.
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5.7 Conclusion

In this Chapter, we consider the high dimensional linear regression model under exponential-

in-𝑝 small noise level. We focus on 𝑋 having iid entries generated from an, almost arbitrary,

continuous distribution and 𝛽* being an, almost arbitrary, rational-valued vector of coefficients.

We propose a lattice-based method based on the celebrated Lenstra-Lenstra-Lovasz lattice basis

reduction algorithm. The algorithms reduces the high dimensional linear regression problem

to a shortest vector problem on an appropriately designed lattice. Interestingly, we prove that

the algorithm correctly recovers exactly the vector 𝛽* with one sample 𝑛 = 1 and 𝑝 → +∞.

This is a significant improvement to standard compressed sensing methods, such as LASSO and

Basis Pursuit, which are provably requiring diverging number of samples to succeed. Finally, we

establish that, under mild assumptions on the range of values for the entries of 𝛽*, our proposed

algorithm obtains nearly-optimal noise tolerance.
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Chapter 6

The Landscape of the Planted Clique

Problem:

Dense subgraphs and the Overlap Gap

Property

6.1 Introduction

In this Chapter we study the planted clique problem, first introduced in [Jer92]. In this problem

one observes an 𝑛-vertex undirected graph 𝐺 sampled in two stages; in the first stage, the

graph is sampled according to an Erdős-Rényi graph 𝐺
(︀
𝑛, 1

2

)︀
and in the second stage, 𝑘 out

of the 𝑛 vertices are chosen uniformly at random and all the edges between these 𝑘 vertices

are deterministically added (if they did not already exist due to the first stage sampling). We

call the second stage chosen 𝑘-vertex subgraph the planted clique 𝒫𝒞. The inference task of

interest is to recover 𝒫𝒞 from observing 𝐺. The focus is on the asymptotic setting where both

𝑘 = 𝑘𝑛, 𝑛 → +∞ and the recovery should hold with probability tending to one as 𝑛 → +∞
(w.h.p.).

It is a standard result in the literature that as long as 𝑘 ≥ (2 + 𝜖) log2 𝑛, the graph 𝐺 will

have only 𝒫𝒞 as a 𝑘-clique in 𝐺 w.h.p. (see e.g. [Bol85]). In particular under this assumption,

𝒫𝒞 is recoverable w.h.p. by the brute-force algorithm which checks every 𝑘-vertex subset of
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whether they induce a 𝑘-clique or not. Note that the exhaustive algorithm requires
(︀
𝑛
𝑘

)︀
time

to terminate, making it in principle not polynomial-time for the values of 𝑘 of interest. For

any 𝑘 ≥ (2 + 𝜖) log2 𝑛, a relatively simple quasipolynomial-time algorithm, that is an algorithm

with termination time 𝑛𝑂(log𝑛), can be also proven to recover 𝒫𝒞 correctly w.h.p. as 𝑛 → +∞
(see e.g. the discussion in [FGR+17] and references therein). Note that a quasipolynomial-time

termination time outperforms the termination time of the exhaustive search for 𝑘 = 𝜔 (log 𝑛).

The first polynomial-time (greedy) recovery algorithm of 𝒫𝒞 came out of the observation in

[Kuč95] according to which when 𝑘 ≥ 𝐶
√
𝑛 log 𝑛 for some sufficiently large 𝐶 > 0, the 𝑘-highest

degree nodes in 𝐺 are the vertices of 𝒫𝒞 w.h.p. A fundamental work [AKS98] proved that a

polynomial-time algorithm based on spectral methods recovers 𝒫𝒞 when 𝑘 ≥ 𝑐
√
𝑛 for any fixed

𝑐 > 0 (see also [FR10], [DM], [DGGP14] and references therein.) Furthermore, in the regime

𝑘/
√
𝑛→ 0, various computational barriers have been established for the success of certain classes

of polynomial-time algorithms, such as the Sum of Squares Hierarchy [BHK+16], the Metropolis

Process [Jer92] and statistical query algorithms [FGR+17]. Nevertheless, no general algorithmic

barrier such as NP-hardness has been proven for recovering 𝒫𝒞 when 𝑘/
√
𝑛 → 0. The absence

of polynomial-time algorithms together with the absence of an NP-hardness explanation in the

regime where 𝑘 ≥ (2 + 𝜖) log 𝑛 and 𝑘/
√
𝑛 → 0 gives rise to arguably one of the most celebrated

and well-studied computational-statistical gaps in the literature, known as the planted clique

problem.

Computational gaps Computational gaps between what existential or brute-force methods

promise and what computationally efficient algorithms achieve is an ubiquitous phenomenon

in the analysis of algorithmic tasks in random environments. Such gaps arise for example in

the study of several “non-planted" models like the maximum-independent-set problem in sparse

random graphs [GSa], [COE11], the largest submatrix problem of a random Gaussian matrix

[GL16], the diluted 4-spin-model [CGPR17] and the study of random 𝑘-SAT [MMZ05], [ACO08].

Recently, such computational gaps started appearing in “planted" inference algorithmic tasks in

statistics literature such as the high dimensional linear regression problem [GZ17a], [GZ17b], the

tensor principal component analysis (PCA) [BAGJ18], [BR13] the stochastic block model (see

[Abb17], [BBH18] and references therein) and, of course, the planted clique problem described
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above. Towards the fundamental study of such computational gaps the following two methods

have been considered.

(1) Computational gaps: Average-Case Complexity Theory and the central role of

Planted Clique

None of the above gaps have been proven to be an NP-hard algorithmic task. Nevertheless,

in correspondence with the well-studied worst-case NP-Completeness complexity theory

(see e.g. [Kar72]), some very promising attempts have been made towards building a sim-

ilar theory for planted inference algorithmic tasks (see e.g. [BR13], [CLR17], [WBP16],

[BBH18] and references therein). The goal of this line of research is to show that for

two conjecturally computationally hard statistical tasks the existence of a polynomial-time

algorithm for one task implies a polynomial-time recovery algorithm for the other. In par-

ticular, (computational hardness of) the latter task reduces to (computational hardness of)

the former. Notably, the planted clique problem seem to play a central role in these devel-

opments, similar to the role the boolean-satisfiability problem played in the development of

the worst-case NP-completeness theory. Specifically in the context of statistical reduction,

multiple statistical tasks in their conjecturally hard regime such as Sparse-PCA [BR13],

submatrix localization [CLR17], RIP certification [WBP16], rank-1 Submatrix Detection,

Biclustering [BBH18] have been proven to reduce to the planted clique problem in the

regime 𝑘/
√
𝑛→ 0.

(2) Computational Gaps: A Spin Glass Perspective (Overlap Gap Property)

For several of the above-mentioned computational gaps, an inspiring connection have been

drawn between the geometry of their solution space, appropriately defined, and their al-

gorithmic difficulty. Specifically it has been repeatedly observed that the appearance of a

certain disconnectivity property in the solution space called Overlap Gap Property (OGP),

originated in spin glass theory, coincides with the conjectured algorithmic hard phase for

the problem. Furthermore, it has also been seen that at the absence of this property even

greedy algorithms can exploit the smooth geometry and succeed.

The connection between algorithmic performance and OGP was initially made in the study

of the celebrated example of random 𝑘-SAT (independently by [MMZ05], [ACORT11]) but
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then has been established for other “non-planted" models such as maximum independent

set in random graphs [GSa], [RV14] but also “planted models" such as high dimensional

linear regression [GZ17a], [GZ17b] and tensor PCA [BAGJ18]. Despite the fundamental

nature of the planted clique problem in the development of average-case complexity theory,

OGP has not been studied for the planted clique problem. The study of OGP in the context

of the planted clique problem is the main focus of this work.

We start with providing some intuition on what OGP is in the context of “non-planted"

problems. Motivated by the study of concentration of the associated Gibbs measures

[Tal10] for low enough temperature, the OGP concerns the geometry of the near (opti-

mal) solutions. It has been observed that any two “near-optimal" solutions for many such

modes exhibit the disconnectivity property stating that that their overlap, measured as a

rescaled Hamming distance, is either very large or very small, which we call the Overlap

Gap Property (OGP) [ACORT11], [ACO08], [MRT11], [COE11], [GSa], [RV14], [CGPR17]

[GSb]. For example, the independent sets achieving nearly maximal size in sparse random

graph exhibit the OGP [GSa]. An interesting rigorous link also appears between OGP

and the power of local algorithms. For example OGP has been used in [GSa] to estab-

lish a fundamental barriers on the power of a class of local algorithms called i.i.d. factors

for finding nearly largest independent sets in sparse random graphs (see also [RV14] for a

tighter later result). Similar negative results have been established in the context of the

random NAE-K-SAT problem for the Survey propagation [GSb], of random NAE-K-SAT

for the Walksat algorithm [COHH16] and of the max-cut problem in random hypergraphs

for the family of i.i.d. factors [CGPR17], As mentioned also above, when OGP disappears

the picture changes and, for many of these problems, greedy methods successfully work

[ACO08], [AKKT02]. Importantly, because of this connection it is conjectured that the

onset of the phase transition point for the presence of OGP corresponds to the onset of

algorithmic hardness.

It is worth mentioning that other properties such as the shattering property and the conden-

sation, which have been extensively studied in the context of random constraint satisfaction

problems, such as random K-SAT, are topological properties of the solution space which

have been linked with algorithmic difficulty (see e.g. [ACO08], [KMRT+07] for appropriate
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definitions). We would like to importantly point out that neither of them is identical with

OGP. OGP implies for trivial reasons the shattering property but the other implication

does not hold. For example, consider the model of random linear equations [ACOGM17],

where recovery can be obtained efficiently via the Gaussian elimination when the system is

satisfiable. In [ACOGM17] it is established that OGP never appears as the overlaps con-

centrate on a single point but shattering property does hold in a part of the satisfiability

regime. Furthermore, OGP is also not the same with condensation. For example, in the

solution space of random 𝐾-SAT, OGP appears for multioverlaps around ratio clauses to

variables about 2𝐾 log 2/𝐾 (up to poly-log𝐾 factors) [GSb] which is far below condensa-

tion which appears around ratio 2𝐾 log 2 [KMRT+07]. It should be noted that in random

k-SAT the onset of the apparent algorithmic hardness also occurs around 2𝐾 log 2/𝐾 [GSb],

[Het16]. The exact connection between each of these properties and algorithmic hardness

is an ongoing and fascinating research direction.

Recently the study of OGP has been initiated for “planted" problems as well, for example

for the high dimensional linear regression problem [GZ17a], [GZ17b]. For this “planted"

problem, the goal is to recover a hidden 𝑘-sparse binary vector from noisy linear observa-

tions of it. The strategy followed in this Chapter is comprised of two steps. First the task

is reduced into an average-case optimization task associated with a natural empirical risk

objective. Then, as a second step, a geometric analysis of the region of feasible solutions is

performed and the OGP (or the lack of it) is established. Interestingly, in this line of work

the “overlaps" considered are between the “near-optimal" solutions of the optimization task

and the planted structure itself. In the present paper we follow a similar path to identify

the OGP phase transition point for the planted clique problem.

Contribution and Discussion

In this Chapter we analyze the presence of OGP for the planted clique problem. We first turn the

inference goal into an average-case optimization problem by adopting an “empirical risk" objective

and then perform the OGP analysis on the landscape of near-optimal solutions. The first natural

choice for the empirical risk is the log-likelihood of the recovery problem which assigns to any

𝑘-subset 𝐶 ⊆ 𝑉 (𝐺) the risk value − logP (𝒫𝒞 = 𝐶|𝐺). A relatively straightforward analysis of
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this choice implies that when 𝑘 ≥ (2 + 𝜖) log2 𝑛 the only 𝑘-subset obtaining a non-trivial log-

likelihood is the planted clique itself, since there are no other cliques of size 𝑘 in the graph w.h.p.

as 𝑛 → +∞. In particular, this perspective of studying the near-optimal solutions and OGP

fails to provide anything fruitful.

The Dense Subgraphs Landscape and OGP We adopt the “relaxed" 𝑘-Densest-Subgraph

objective of the observed graph 𝐺 which assigns to any 𝑘-subset 𝐶 ⊆ 𝑉 (𝐺) the empirical risk

−|E[𝐶]|, that is we would like to solve

𝒟(𝐺) : max
𝐶⊆𝑉 (𝐺),|𝐶|=𝑘

|𝐸[𝐶]|,

where by E[𝐶] we refer to the set of edges in the induced subgraph defined by 𝐶. Notice that

𝒟(𝐺) is equivalent with maximizing the log-likelihood of a similar recovery problem, the planted

𝑘-dense subgraph problem where the edges of 𝒫𝒞 are only placed with some specific probability

1 > 𝑝 > 1/2 and the rest of the edges are still drawn with probability 1
2

as before (see e.g.

[BBH18] and references therein). Also, notice that, interestingly, 𝒟(𝐺) does not depend on the

value of 𝑝; that is it is universal for all values of 𝑝 ∈ (1
2
, 1). Now the planted clique model we

are interested in can be seen as the extreme case of the planted 𝑘-dense subgraph problem when

𝑝 → 1−. In this work we analyze the overparametrized version of 𝒟(𝐺), 𝑘-densest-subgraph

problem, where for some parameter 𝑘 ≥ 𝑘 the focus is on

𝒟𝑘,𝑘(𝐺) : max
𝐶⊆𝑉 (𝐺),|𝐶|=𝑘

|𝐸[𝐶]|, (6.1)

while importantly the planted clique in 𝐺 remains of size 𝑘. In this work we study the following

question:

How much can a near-optimal solution of 𝒟𝑘,𝑘(𝐺) intersect the planted clique 𝒫𝒞?

The Overlap Gap Property (𝑘-OGP) for the 𝑘-Densest subgraph problem would mean that

near-optimal solution of 𝒟𝑘,𝑘(𝐺) (sufficiently dense 𝑘-subgraphs of 𝐺) have either a large or small

intersection with the planted clique (see Definition 6.2.1 below for more details on the notion).
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To study the presence of 𝑘-OGP we focus on the monotonicity of the overlap-restricted

optimal values for 𝑧 = ⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋+ 1, . . . , 𝑘;

𝑑𝑘,𝑘(𝐺)(𝑧) = max
𝐶⊆𝑉 (𝐺),|𝐶|=𝑘,overlap(𝐶)=𝑧

|𝐸[𝐶]|,

where overlap(𝐶) := |𝐶 ∩𝒫𝒞|. Note that we define the overlaps beginning from ⌊𝑘𝑘
𝑛
⌋ as this level

of overlap with 𝒫𝒞 is trivially obtained from a uniformly at random chosen 𝑘-vertex subgraph.

Monotonicity and OGP It is not hard to see that the monotonicity (or lack of) of 𝑑𝑘,𝑘(𝐺)(𝑧)

might be linked with the presence or absence of 𝑘-OGP. For example, assume that for some

realization of 𝐺 the curve 𝑑𝑘,𝑘 satisfies that for some 𝑧* ∈ (⌊𝑘𝑘
𝑛
⌋, 𝑘) ∩ Z,

𝑑𝑘,𝑘(𝐺)(𝑧
*) < min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(𝑘)}. (6.2)

then 𝑘-OGP holds. Indeed, choosing any 𝒯 > 0 with

𝑑𝑘,𝑘(𝐺)(𝑧
*) < 𝒯 < min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(𝑘)}

we notice that (1) since 𝒯 > 𝑑𝑘,𝑘(𝐺)(𝑧
*) any “dense" 𝑘-subgraph with at least 𝒯 edges cannot

overlap at exactly 𝑧* vertices with 𝒫𝒞 and (2) since 𝒯 < min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(𝑘)} there exist

both zero and full overlap “dense" 𝑘-subgraphs with that many edges. On the other hand, when

the curve is monotonic with respect to overlap 𝑧, 𝑘-OGP does not hold for a similar reasoning.

Furthermore, note, that when the curve is monotonically increasing the near-optimal solutions

of 𝒟𝑘,𝑘(𝐺) have almost full intersection with 𝒫𝒞 (hence, considered relevant for recovery), while

when it is monotonically decreasing the near-optimal solutions of 𝒟𝑘,𝑘(𝐺) have almost empty

intersection with 𝒫𝒞 (hence, considered irrelevant for recovery).

Monotonicity of the First Moment Curve Using an optimized union-bound argument

(first moment method) we obtain a deterministic upper bound function (we call it first moment

curve) Γ𝑘,𝑘(𝑧) such that for all overlap values 𝑧,

𝑑𝑘,𝑘(𝐺)(𝑧) ≤ Γ𝑘,𝑘(𝑧), (6.3)
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Low Overparametrization 𝑘 High Overparametrization 𝑘
𝑘 = 𝑜 (

√
𝑛) Γ𝑘,𝑘 non-monotonic Γ𝑘,𝑘 monotonically decreasing

𝑘 = 𝜔 (
√
𝑛) Γ𝑘,𝑘 non-monotonic Γ𝑘,𝑘 monotonically increasing

Table 6.1: The monotonicity phase transitions of Γ𝑘,𝑘 at 𝑘 =
√
𝑛 and varying 𝑘.

which is also provably tight, up-to-lower order terms, at the end-point 𝑧 = 0 (Proposition 6.2.3).

For this reason, with the hope that Γ𝑘,𝑘(𝑧) provides a tight upper bound in (6.3), we perform a

monotonicity analysis of Γ𝑘,𝑘(𝑧).

We discover that when 𝑘 = 𝑜 (
√
𝑛), and relatively small 𝑘 (including 𝑘 = 𝑘) Γ𝑘,𝑘 is non-

monotonic satisfying a relation similar to (6.2) for some 𝑧*, while for relatively large 𝑘 it is

decreasing. On the other hand, when 𝑘 = 𝜔 (
√
𝑛) for relatively small 𝑘 Γ𝑘,𝑘 is non-monotonic

satisfying a relation similar to (6.2) for some 𝑧*, while for relatively large 𝑘 it is increasing.

In particular, an exciting phase transition is taking place at the critical size 𝑘 =
√
𝑛 and high

overparametrization 𝑘. A summary is produced in Table 1. Theorem 6.2.5 and the discussion

that follows provide exact details of the above statements.

Assuming the tightness of Γ𝑘,𝑘 in (6.3) we arrive at a conjecture regarding the 𝑘-OGP of the

landscape. In the apparently algorithmically ihard regime 𝑘 = 𝑜 (
√
𝑛) the landscape is either

exhibiting 𝑘-OGP or is uniformative. On the other hand, in the algorithmically tractable regime

𝑘 = 𝜔 (
√
𝑛) for appropriately large 𝑘 there is no 𝑘-OGP and the optimal solutions of 𝒟𝑘,𝑘(𝐺)

have almost full overlap with 𝒫𝒞. Of course this is only a prediction for the monotonicity of

𝑑𝑘,𝑘(𝐺), as the function Γ𝑘,𝑘 corresponds only to an upper bound. For this reason we establish

results proving parts of the picture suggested by the monotonicity of Γ𝑘,𝑘.

Overlap Gap Property for 𝑘 = 𝑛0.0917 We establish that under the assumption 𝑘 ≤ 𝑘 = 𝑛𝐶 ,

for some 0 < 𝐶 < 𝐶* = 1
2
−

√
6
6

∼ 0.0917.. indeed 𝑘-OGP holds for 𝒟𝑘,𝑘 (𝐺) (notice 𝑘 = 𝑜 (
√
𝑛)) in

the regime. The result holds for all values of 𝑘 (up-to-log factors) where the curve Γ𝑘,𝑘 is proven

non-monotonic (Theorem 6.2.9). Specifically, we establish that for some constants 0 < 𝐷1 < 𝐷2

any 𝑘-subgraph of 𝐺 which is “sufficiently dense" will either intersect 𝒫𝒞 in at most 𝐷1

√︁
𝑘

log 𝑛
𝑘̄

nodes or in at least 𝐷2

√︁
𝑘

log 𝑛
𝑘̄

nodes. Our proof is based on a delicate second moment method

argument for dense subgraphs of Erdős-Rényi graphs. We believe that the second moment

method argument can be further improved to extend the result to the case 𝐶* = 0.5 − 𝜖 for
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arbitrary 𝜖 > 0. We leave this important step as an open question.

The use of Overparametrization The ability to choose 𝑘 > 𝑘 is paramount in all the results

described here. If we have opted for the arguably more natural choice 𝑘 = 𝑘, and focused solely on

𝑘-vertex subgraphs the monotonicity of the curve Γ𝑘,𝑘 exhibits a phase transition at the peculiar

threshold 𝑘 = 𝑛
2
3 (see Remark 6.2.6). To make this more precise, no landscape phase transition

is suggested around the apparent algorithmic threshold 𝑘 =
√
𝑛 if we focus on 𝑘-vertex dense

subgraphs (see for example the identical nature of Figure 1(a) and Figure 2(a) where 𝑘 is chosen

near
√
𝑛 from below and above respectively). For this reason, the use of overparametrization is

fundamental.

Significant inspiration from this overparametrization approach is derived from it’s recent

success on “smoothening" bad local behavior in landscapes arising predominantly in the context

of deep learning [SS17], [VBB18], [LMZ18] but also beyond it (e.g. [XHM18] in the context of

learning mixtures of Gaussians). We consider this to be a novel conceptual contribution to this

line of research on computational-statistical gaps with potentially various extensions.

𝑛0.5−𝜖-Dense Subgraphs of 𝐺
(︀
𝑛, 1

2

)︀
Proposition 6.2.3 and Theorem 6.2.9 are based on a new

result on the 𝐾-Densest subgraph of a vanilla Erdős-Rényi model 𝐺0 sampled from 𝐺
(︀
𝑛, 1

2

)︀
;

𝑑ER,𝐾(𝐺0) = max
𝐶⊆𝑉 (𝐺0),|𝐶|=𝐾

|𝐸[𝐶]|,

for any 𝐾 < 𝑛
1
2
−𝜖 where 𝜖 > 0. The study of 𝑑ER,𝐾(𝐺0) is a natural question in random graph

theory which, to the best of our knowledge, remains not well-understood even for moderately

large values of 𝐾 = 𝐾𝑛. For small enough values of 𝐾, specifically 𝐾 < 2 log2 𝑛, it is well-

known 𝑑ER,𝐾(𝐺0) =
(︀
𝐾
2

)︀
w.h.p. as 𝑛 → +∞ (originally established in [GM75]). On the other

hand when 𝐾 = 𝑛, trivially 𝑑ER,𝐾(𝐺0) follows Binom
(︀(︀

𝐾
2

)︀
, 1
2

)︀
and hence for any 𝛼𝐾 = 𝜔 (1),

𝑑ER,𝐾(𝐺0) = 1
2

(︀
𝐾
2

)︀
+ 𝑂 (𝐾𝛼𝐾) w.h.p. as 𝑛 → +∞. If we choose for the sake of argument

𝛼𝐾 = log log𝐾 the following natural question can be posed;

How 𝑑ER,𝐾(𝐺0) transitions from
(︀
𝐾
2

)︀
for 𝐾 < 2 log2 𝑛 to 1

2

(︀
𝐾
2

)︀
+𝑂 (𝐾 log log𝐾) for 𝐾 = 𝑛?

A recent result in the literature studies the case 𝐾 = 𝐶 log 𝑛 for 𝐶 > 2 [BBSV18] and
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establishes (it is an easy corollary of the main result of the aforementioned paper),

𝑑ER,𝐾(𝐺0) = ℎ−1

(︂
log 2− 2 (1 + 𝑜 (1))

𝐶

)︂(︂
𝑘

2

)︂
, (6.4)

w.h.p. as 𝑛→ +∞. Here log is natural logarithm and ℎ−1 is the inverse of the (rescaled) binary

entropy ℎ : [1
2
, 0] → [0, 1] is defined by

ℎ(𝑥) = −𝑥 log 𝑥− (1− 𝑥) log 𝑥. (6.5)

Notice that lim𝐶→+∞ ℎ−1
(︁
log 2− 2(1+𝑜(1))

𝐶

)︁
= 1

2
which means that the result from [BBSV18]

agrees with the first order behavior of 𝑑ER,𝐾(𝐺0) at “ very large" 𝐾 such as 𝐾 = 𝑛. The proof

from [BBSV18] is based on a careful and elegant application of the second moment method,

where special care is made to control the way “sufficiently dense" subgraphs overlap.

We study the behavior of 𝑑ER,𝐾(𝐺0) for any 𝐾 < 𝑛
1
2
−𝜖, for 𝜖 > 0. Specifically, we build

and improve on the second moment method technique from [BBSV18] and establish tight results

for first and second order behavior of 𝑑ER,𝐾(𝐺0) when 𝐾 is a power of 𝑛 strictly less than
√
𝑛.

Specifically in Theorem 6.2.10 we show that for any 𝐾 = 𝑛𝐶 for 𝐶 ∈ (0, 1
2
) there exists some

positive constant 𝛽 = 𝛽(𝐶) ∈ (0, 3
2
) such that

𝑑ER,𝐾(𝐺0) = ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃(︂

𝐾

2

)︂
−𝑂

(︁
𝐾𝛽
√︀

log 𝑛
)︁

(6.6)

w.h.p. as 𝑛→ +∞.

First notice that as our result are established when 𝐾 is a power 𝑛 it does not apply in the

logarithmic regime. Nevertheless, it is in agreement with the result of of [BBSV18] since for

𝐾 = 𝐶 log 𝑛,
log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀ = (1 + 𝑜 (1))
𝐾 log

(︀
𝑛
𝐾

)︀

𝐾2

2

= (1 + 𝑜 (1))
2

𝐶
,

that is the argument in ℎ−1 of (6.6) converges to the argument in ℎ−1 of (6.4) at this scaling.

Finally, by Taylor expanding ℎ−1 around log 2: ℎ−1 (log 2− 𝑡) = 1
2
+ 1√

2

√
𝑡 + 𝑜

(︀√
𝑡
)︀

for
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𝑡 = 𝑜 (1) (Lemma 6.8.3), using our result we can identify the second order behavior of 𝑑ER,𝐾(𝐺0)

𝑑ER,𝐾(𝐺0) =
𝐾2

4
+
𝐾

3
2

√︁
log
(︀
𝑛
𝐾

)︀

2
+ 𝑜

(︁
𝐾

3
2

)︁
,

w.h.p. as 𝑛 → +∞. See Corollary 2 for the exact statement. Note that the second order

behavior is of different order in 𝐾 that in the case 𝐾 = 𝑛. We leave the analysis of the behavior

of 𝑑ER,𝐾(𝐺0) in the regime for 𝐾 between 𝑛
1
2 and 𝑛 as an intruiguing open question.

Connection with 𝑘-OGP Notice that our result (6.6) holds for any 𝐾 = Θ
(︀
𝑛𝐶
)︀
, 0 < 𝐶 < 1

2

but in the discussion above we only claimed of using this result to prove 𝑘-OGP for 𝐶 < 0.0917.

This happens because to establish 𝑘-OGP using our non-monotonicity arguments and this result

(for 𝐾 = 𝑘) we need to make sure the error term in (6.6) is 𝑜 (𝐾), which from our result it can

only be established if 𝐶 < 0.0917. The reason is that to transfer the non-monotonicity of the first

moment curve Γ𝑘,𝑘(𝑧) to the non-monotonicity of the actual curve 𝑑𝑘,𝑘(𝐺) we need the error term

in our approximation gap between 𝑑𝑘,𝑘 (𝐺) (𝑧) and Γ𝑘,𝑘(𝑧) to do not alter the non-monotonicity

behavior of Γ𝑘,𝑘(𝑧). We quantify the non-monotonicity via its “depth", that is via

min{Γ𝑘,𝑘 (0) ,Γ𝑘,𝑘 (𝑘)} − min
𝑧∈[0,𝑘]

Γ𝑘,𝑘(𝑧).

The latter “depth" quantity can be proven to grow with order similar to Ω (𝐾) = Ω
(︀
𝑘
)︀

leading

to the necessary order for the error term to make the argument go through.

Notation Throughout the paper we use standard big 𝑂 notations, e.g., for any real-valued

sequences {𝑎𝑛}𝑛∈N and {𝑏𝑛}𝑛∈N, 𝑎𝑛 = Θ(𝑏𝑛) if there exists an absolute constant 𝑐 > 0 such that
1
𝑐
≤ |𝑎𝑛

𝑏𝑛
| ≤ 𝑐; 𝑎𝑛 = Ω(𝑏𝑛) or 𝑏𝑛 = 𝑂 (𝑎𝑛) if there exists an absolute constant 𝑐 > 0 such that

|𝑎𝑛
𝑏𝑛
| ≥ 𝑐; 𝑎𝑛 = 𝜔 (𝑏𝑛) or 𝑏𝑛 = 𝑜 (𝑎𝑛) if lim𝑛 |𝑎𝑛𝑏𝑛 | = 0.

For an undirected graph 𝐺 on 𝑛 vertices we denote by 𝑉 (𝐺) the sets of its vertices and 𝐸[𝐺]

the set of its edges. For a subset 𝑆 of 𝑉 (𝐺) we refer to the set of all vertices in 𝑉 (𝐺) which are

connected with an edge to every vertex of 𝑆, as the common neighborhood of 𝑆.

Throughout the paper we denote by ℎ the (rescaled) binary entropy given by (6.5) and for

𝛾 ∈ (1
2
, 1), we define

𝑟(𝛾,
1

2
) := log 2− ℎ(𝛾). (6.7)
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6.2 Main Results

6.2.1 The Planted Clique Model and Overlap Gap Property

We start with formally defining the Planted Clique Model and the recovery goal of interest.

Parameter Assumptions Let 𝑘, 𝑛 ∈ N with 𝑘 ≤ 𝑛. We assume that both 𝑘, 𝑛 are known.

All of our results focus on the regime where 𝑘 = 𝑘𝑛 grows with 𝑛 as 𝑛 → +∞ with 𝜔(log 𝑛) =

𝑘 = 𝑜(𝑛).

The Generative Process First sample an 𝑛 vertex undirected graph 𝐺0 according to the

Erdős-Rényi 𝐺(𝑛, 1
2
) distribution. Then choose 𝑘 out of 𝑛 vertices of 𝐺0 uniformly at random

and connect all pairs of these vertices with an undirected edge, creating what we call as the

planted clique 𝒫𝒞 of size 𝑘. We denote the resulting 𝑛-vertex undirected graph by 𝐺
(︀
𝑛, 𝑘, 1

2

)︀
or

𝐺 for simplicity.

The Recovery Goal Given one sample of 𝐺 recover the vertices of the planted clique 𝒫𝒞.

6.2.2 The 𝑘-Densest Subgraph Problem for 𝑘 ≥ 𝑘 = |𝒫𝒞|

We study the landscape of the sufficiently dense subgraphs in 𝐺. Besides 𝑛, 𝑘 we introduce an

additional parameter 𝑘 ∈ N with 𝑘 ≤ 𝑘 ≤ 𝑛 that will be optimized. The dense subgraphs we

consider are of vertex size 𝑘. We study overlaps between the sufficiently dense 𝑘-dense subgraphs

and the planted clique 𝒫𝒞. Specifically we focus on the 𝑘-densest subgraph problem on 𝐺,

𝒟𝑘,𝑘(𝐺) defined in (6.8).

We define the 𝑘-Overlap Gap Property of 𝒟𝑘,𝑘(𝐺).

Definition 6.2.1 (𝑘-OGP). 𝒟𝑘.𝑘 (𝐺) exhibits 𝑘-Overlap Gap Property (𝑘-OGP) if there exists

𝜁1,𝑛, 𝜁2,𝑛 ∈ [𝑘] with 𝜁1,𝑛 < 𝜁2,𝑛 and 0 < 𝑟𝑛 <
(︀
𝑘
2

)︀
such that;

(1) There exists 𝑘-subsets 𝐴,𝐴′ ⊆ 𝑉 (𝐺) with |𝐴 ∩ 𝒫𝒞| ≤ 𝜁1,𝑛,

|𝐴′ ∩ 𝒫𝒞| ≥ 𝜁2,𝑛 and min{|E [𝐴] |, |E [𝐴′] |} ≥ 𝑟𝑛.

(2) For any 𝑘-subset 𝐴 ⊂ 𝑉 (𝐺) with |E [𝐴] | ≥ 𝑟𝑛 it holds,

either |𝐴 ∩ 𝒫𝒞| ≤ 𝜁1,𝑛 or |𝐴 ∩ 𝒫𝒞| ≥ 𝜁2,𝑛.
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Here, the first part of the definition ensures that there are sufficiently dense 𝑘-subgraphs of 𝐺

with both “low" and “high" overlap with 𝒫𝒞. The second condition ensures that any sufficiently

dense 𝑘-subgraph of 𝐺 will have either “low" overlap or “high" overlap with 𝒫𝒞, implying gaps

in the realizable overlap sizes.

To study 𝑘-OGP we study the following curve. For every 𝑧 ∈ {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋+ 1, . . . , 𝑘} let

𝒟𝑘,𝑘(𝐺)(𝑧) : max
𝐶⊆𝑉 (𝐺),|𝐶|=𝑘,|𝐶∩𝒫𝒞|=𝑧

|𝐸[𝐶]|. (6.8)

with optimal value denoted by 𝑑𝑘,𝑘(𝐺)(𝑧). In words, 𝑑𝑘,𝑘(𝐺)(𝑧) corresponds to the number

of edges of the densest 𝑘-vertex subgraph with vertex-intersection with the planted clique of

cardinality 𝑧. Notice that, as explained in the previous section, we restrict ourselves to overlap

at least 𝑘𝑘/𝑛 since this level of intersection with 𝒫𝒞 is achieved simply by sampling uniformly

at random a 𝑘-vertex subgraph of 𝐺.

6.2.3 Monotonicity Behavior of the First Moment Curve Γ𝑘,𝑘

The following deterministic curve will be of distinct importance in what follows.

Definition 6.2.2 (First moment curve). We define the first moment curve to be the real-valued

function Γ𝑘,𝑘 : {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋+ 1, . . . , 𝑘} → R>0, where for 𝑧 = 𝑘 = 𝑘,

Γ𝑘,𝑘(𝑘) =

(︂
𝑘

2

)︂

and otherwise

Γ𝑘,𝑘(𝑧) =

(︂
𝑧

2

)︂
+ ℎ−1

(︃
log 2−

log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
)︃(︂(︂

𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂

for 𝑧 ∈ {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋+ 1, . . . , 𝑘},

Here the function ℎ−1 is the inverse function of ℎ, which is defined in (6.5). We establish the

following proposition relating 𝑑𝑘,𝑘(𝐺)(𝑧) and Γ𝑘,𝑘(𝐺)(𝑧).

Proposition 6.2.3. Let 𝑘, 𝑘, 𝑛 ∈ N with 𝑘 ≤ 𝑘 ≤ 𝑛.
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(1) For any 𝑧 ∈ {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋+ 1, . . . , 𝑘}

𝑑𝑘,𝑘(𝐺)(𝑧) ≤ Γ𝑘,𝑘(𝑧),

with high probability as 𝑛→ +∞.

(2) Suppose (log 𝑛)5 ≤ 𝑘 ≤ 𝑘 = Θ
(︀
𝑛𝐶
)︀

for 𝐶 ∈ (0, 1
2
). For any 𝛽 ∈ (0, 3

2
) with

𝛽 = 𝛽(𝐶) >
3

2
−
(︂
5

2
−
√
6

)︂
1− 𝐶

𝐶
,

Γ𝑘,𝑘 (0)−𝑂
(︁(︀
𝑘
)︀𝛽√︀

log 𝑛
)︁
≤ 𝑑𝑘,𝑘(𝐺)(0), (6.9)

with high probability as 𝑛→ +∞.

The bounds stated in Proposition 6.2.3 are based on the first and second moment methods.

The proof of Proposition 6.2.3 is in Section 6.4.

Remark 6.2.4. Under the assumptions of Part (2) of Proposition 6.2.3 we have

Γ𝑘,𝑘 (0) =
1

2

(︂
𝑘

2

)︂
+

(︂
1√
2
+ 𝑜 (1)

)︂√︃(︂
𝑘

2

)︂
log

[︂(︂
𝑛− 𝑘

𝑘

)︂]︂

=

(︀
𝑘
)︀2

4
+

(︀
𝑘
)︀ 3

2

√︂
log
(︁

(𝑛−𝑘)𝑒

𝑘

)︁

2
+ 𝑜

(︁(︀
𝑘
)︀ 3

2
√︀

log 𝑛
)︁
.

Here we have used Taylor expansion for ℎ−1 around log 2: ℎ−1 (log 2− 𝑡) = 1
2
+
(︁

1√
2
+ 𝑜 (1)

)︁√
𝑡

(Lemma 6.8.3) for 𝑡 =
log((𝑛−𝑘

𝑘̄ ))
(𝑘̄2)

= 𝑂
(︀
log𝑛
𝑘

)︀
= 𝑜 (1) and Stirling’s approximation. The above

calculation shows that the additive error term in (6.9) can change the value of Γ𝑘,𝑘(0) only at the

third higher order term.

We explain here how Part (1) of Proposition 6.2.3 is established with a goal to provide intuition

for the first moment curve definition. Fix some 𝑧 ∈ {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋ + 1, . . . , 𝑘}. For 𝛾 ∈ (0, 1) we

consider the counting random variable for the number of subgraphs with 𝑘 vertices, 𝑧 vertices
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common with the planted clique and at least
(︀
𝑧
2

)︀
+ 𝛾

(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁
edges;

𝑍𝛾,𝑧 := |{𝐴 ⊆ 𝑉 (𝐺) : |𝐴| = 𝑘, |𝐴 ∩ 𝒫𝒞| = 𝑧, |𝐸[𝐴]| ≥
(︂
𝑧

2

)︂
+ 𝛾

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
}|.

Notice that first moment method, or simply Markov’s inequality, yields

P [𝑍𝛾,𝑧 ≥ 1] ≤ E [𝑍𝛾,𝑧] .

In particular, if for some 𝛾 > 0 it holds E [𝑍𝛾,𝑧] = 𝑜(1) we conclude that 𝑍𝛾,𝑧 = 0 whp and in

particular all dense subgraphs have at most
(︀
𝑧
2

)︀
+ 𝛾

(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁
edges, that is

𝑑𝑘,𝑘(𝐺)(𝑧) ≤
(︂
𝑧

2

)︂
+ 𝛾

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
,

w.h.p. as 𝑛 → +∞. Therefore the pursuit of finding the tightest upper bound using this

technique, consists of finding the min 𝛾 : E [𝑍𝛾,𝑧] = 𝑜(1).

Note that for any subset 𝐴 ⊂ 𝑉 (𝐺) the number of its induced edges follows a shifted Binomial

distribution
(︀
𝑧
2

)︀
+ Bin

(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
, 1
2

)︁
. In particular, we have

E [𝑍𝛾,𝑧] =

(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
P
[︂
Bin

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂
,
1

2

)︂
≥ 𝛾

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂]︂
.

From this point on, standard identities connecting the tail of the Binomial distribution with the

binary entropy function ℎ (see for example Lemma 6.8.2 below) yield the optimal choice to be

𝛾 := ℎ−1

(︃
log 2−

log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
)︃
,

which yields Part (1) if Proposition 6.2.3. More details are in Section 6.4. The part (2) fol-

lows from a much more elaborate second moment method, the discussion of which we defer to

Subsection 6.2.5 and Section 6.3.

We study the monotonicity property of the first moment curve. We establish the following

proposition which proves that for appropriate choice of the overparametrization level of 𝑘, the

first moment curve Γ𝑘,𝑘(𝐺) exhibits a monotonicity phase transitions at the predicted algorithmic
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threshold 𝑘 = Θ(
√
𝑛).

Theorem 6.2.5 (Monotonicity Phase Transition at 𝑘 =
√
𝑛). Let 𝑘, 𝑘, 𝑛 ∈ N with 𝑛 → +∞

and 𝜖 > 0 an arbitrarily small constant. Suppose 𝑘 ≤ 𝑘 ≤ 𝑛 and furthermore (log 𝑛)5 ≤ 𝑘 = 𝑜 (𝑛).

There exist a sufficiently large constant 𝐶0 = 𝐶0 (𝜖) > 0 such that for the discretized interval

ℐ = ℐ𝐶0 = Z ∩
[︁
⌊𝐶0

𝑘𝑘
𝑛
⌋, (1− 𝜖) 𝑘

]︁
the following are true for sufficiently large 𝑛,

(1) if 𝑘 = 𝑜 (
√
𝑛) then

(1i) for any 𝑘 = 𝑜

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
, the function Γ𝑘,𝑘(𝑧), 𝑧 ∈ ℐ𝐶0 is non-monotonic (Figure 1(a)).

(1ii) for any 𝑘 = 𝜔

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
, the function Γ𝑘,𝑘(𝑧), 𝑧 ∈ ℐ𝐶0 is decreasing (Figure 1(b)).

(2) if 𝑘 = 𝜔 (
√
𝑛) then

(2i) for any 𝑘 = 𝑜

(︂
𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂
, the function Γ𝑘,𝑘(𝑧), 𝑧 ∈ ℐ𝐶0 is non-monotonic (Figure

2(a)).

(2ii) for any 𝑘 = 𝜔

(︂
𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂
, the function Γ𝑘,𝑘(𝑧), 𝑧 ∈ ℐ𝐶0 is increasing (Figure 2(b)).

Furthermore, in the regime that the function is non-monotonic there are constants 0 < 𝐷1 <

𝐷2 such that for 𝑢1 := 𝐷1⌈
√︂

𝑘

log(𝑛
𝑘̄ )
⌉ and 𝑢2 := 𝐷2⌈

√︂
𝑘

log(𝑛
𝑘̄ )
⌉ and large enough 𝑛 the following

are true.

(a) ⌊𝐶0
𝑘𝑘
𝑛
⌋ < 𝑢1 < 𝑢2 < (1− 𝜖) 𝑘 and

(b)

max
𝑧∈ℐ∩[𝑢1,𝑢2]

Γ𝑘,𝑘(𝑧) + Ω

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

≤ Γ𝑘,𝑘(⌊𝐶0
𝑘𝑘

𝑛
⌋) ≤ Γ𝑘,𝑘 ((1− 𝜖) 𝑘) . (6.10)

The proof of the Theorem can be found in Section 6.5.

Remark 6.2.6. In the special case where 𝑘 = 𝑘, it can be straightforwardly checked from Theorem

6.2.5 that Γ𝑘,𝑘 exhibits a monotonicity phase transition at 𝑘 = Θ
(︁
𝑛

2
3

)︁
. In particular, for 𝑘 = 𝑘,

the monotonicity of Γ𝑘,𝑘 obtains no phase transition around 𝑘 = Θ(
√
𝑛).
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(a) "Low" overparametrization 𝑘 = 𝑘 = 700.

200 400 600

1.08634

1.08634

1.08635

1.08635

(b) “High" overparametrization 𝑘 = 2𝑘2 =
980000.

Figure 6-1: The behavior Γ𝑘,𝑘 for 𝑛 = 107 nodes, planted clique of size 𝑘 = 700 ≪ ⌊√𝑛⌋ = 3162
and “high" and “low" values of 𝑘. We approximate Γ𝑘,𝑘(𝑧) using the Taylor expansion of ℎ−1 by

Γ̃𝑘,𝑘(𝑧) =
1
2

(︀(︀
𝑘
2

)︀
+
(︀
𝑧
2

)︀)︀
+ 1√

2

√︁(︀(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︀
log
[︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀]︀
. To capture the monotonicity behavior,

we renormalize and plot
(︀
𝑘
)︀− 3

2

(︁
Γ̃𝑘,𝑘(𝑧)− 1

2

(︀
𝑘
2

)︀)︁
versus the overlap sizes 𝑧 ∈ [⌊𝑘𝑘

𝑛
⌋, 𝑘].

Remark 6.2.7. Note that the monotonicity analysis in Theorem 6.2.5 is performed in the slightly

“shrinked" interval ℐ𝐶0 = Z ∩
[︁
⌊𝐶0

𝑘𝑘
𝑛
⌋, (1− 𝜖) 𝑘

]︁
for arbitrarily small 𝜖 > 0 and some constant

𝐶0 = 𝐶0(𝜖) > 0. The restriction is made purely for technical reasons as it allows for an easier

analysis of the curve’s monotonicity behavior. We leave the monotonicity analysis near the

endpoints as a topic for future work.

Theorem 6.2.5 suggests that there are four regimes of interest for the pair (𝑘, 𝑘) and the

monotonicity behavior of Γ𝑘𝑘(𝑧). We explain here the implication of Theorem 6.2.5 under the

assumption that Γ𝑘,𝑘(𝑧) is a tight approximation of 𝑑𝑘,𝑘(𝐺)(𝑧).
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Let us focus first on the regime where the size of the planted clique is 𝑘 = 𝑜 (
√
𝑛). Assume first

that the level of overparametrization is relatively small, namely 𝑘 = 𝑜

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
, including the

case 𝑘 = 𝑘. In that case the curve is non-monotonic and (6.10) holds (the case of Figure 1(a)).

Now this implies that 𝑘-OGP appears for the model. The reason is that under the tightness

assumption, (6.10) translates to

max
𝑧∈ℐ∩[𝑢1,𝑢2]

𝑑𝑘,𝑘(𝐺)(𝑧) + Ω

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

≤ 𝑑𝑘,𝑘(𝐺)(⌊𝐶0
𝑘𝑘

𝑛
⌋) ≤ 𝑑𝑘,𝑘(𝐺) ((1− 𝜖) 𝑘) .

Using that we conclude easily that for sufficiently small constant 𝑐 > 0 any 𝑘-vertex subgraph

with number of edges at least 𝑑𝑘,𝑘(𝐺)(⌊𝐶0
𝑘𝑘
𝑛
⌋)−𝑐 𝑘

log(𝑛
𝑘̄ )

must have either at most 𝑢1 interesection

with 𝒫𝒞 or at least 𝑢2 intersection with 𝒫𝒞 and there exist both empty and full overlap dense

subgraphs with at least that many edges.

Now assume that overparametrization is relatively large, that is 𝑘 = 𝜔

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
. Then the

function Γ𝑘,𝑘(𝑧) is decreasing (the case of Figure 1(b)). This is a regime where 𝑘-OGP disappears

but the higher overlap 𝑧 with 𝒫𝒞 implies smaller value of 𝑑𝑘,𝑘(𝐺)(𝑧). In particular, in that case

one can efficiently find a sufficiently dense subgraphs but they have almost zero intersection with

𝒫𝒞. In conclusion, when 𝑘 = 𝑜 (
√
𝑛) (and again under the tightness assumption) either the

landscape of the dense subgraphs is uninformative or it exhibits 𝑘-OGP.

Now suppose 𝑘 = 𝜔 (
√
𝑛). Assume first that the overparametrization is relatively small, that

is 𝑘 = 𝑜

(︂
𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂

. In that regime the curve is non-monotonic (see Figure 2(a)). Then, as in

the previous case, 𝑘-OGP appears for the model.

Finally assuming that the overparametrization is relatively large, that is 𝑘 = 𝜔

(︂
𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂

,

the function Γ𝑘,𝑘(𝑧) becomes increasing (see Figure 2(b)). Under the tightness assumption, it is

therefore implied that 𝑘-OGP disappears and higher overlap 𝑧 with 𝒫𝒞 implies higher 𝑑𝑘,𝑘(𝐺)(𝑧).

This is an informative case where one can conjecturally find a sufficiently dense subgraphs, using a

method of local improvements. Notice that in this regime which now sufficiently dense subgraphs

have almost full intersection with 𝒫𝒞.

Summing this up we arrive at the following conjecture based on Theorem 6.2.5.

Conjecture 6.2.8. Suppose (log 𝑛)5 ≤ 𝑘 = 𝑜(𝑛).

(1) If 𝑘 = 𝑜 (
√
𝑛) then
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(a) "Low" overparametrization 𝑘 = 𝑘 = 4000.

2800 3200 3600        4000

0.61810

0.61815

0.61820

0.61825

0.61830

(b) “High" overparametrization 𝑘 = 𝑛2/𝑘2 = 6250000.

Figure 6-2: The behavior Γ𝑘,𝑘 for 𝑛 = 107 nodes, planted clique of size 𝑘 = 4000 ≫ ⌊√𝑛⌋ = 3162
and “high" and “low" values of 𝑘. The rest of the plotting details are identical with that of Figure
1.

(1i) for any 𝑘 = 𝑜
(︀
𝑘2 log

(︀
𝑛
𝑘2

)︀)︀
there is 𝑘-Overlap Gap Property w.h.p. as 𝑛→ +∞.

(1ii) for any 𝑘 = 𝜔
(︀
𝑘2 log

(︀
𝑛
𝑘2

)︀)︀
there is no 𝑘-Overlap Gap Property, but 𝑑𝑘,𝑘(𝐺)(𝑧) is

decreasing as a function of 𝑧 w.h.p. as 𝑛 → +∞. In particular, the near-optimal

solutions of 𝒟𝑘,𝑘(𝐺) are uniformative about recovering 𝒫𝒞.

(2) if 𝑘 = 𝜔 (
√
𝑛),

(2i) for any 𝑘 = 𝑜

(︂
𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂

there is 𝑘-Overlap Gap Property w.h.p. as 𝑛→ +∞.

(2ii) for any 𝜔
(︂

𝑛2

𝑘2 log
(︁

𝑘2

𝑛

)︁
)︂

= 𝑘 = 𝑜 (𝑛) , there is no 𝑘-Overlap Gap Property and 𝑑𝑘,𝑘(𝐺)(𝑧)

is increasing as a function of 𝑧 w.h.p. as 𝑛 → +∞. In particular, the near-optimal
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solutions of 𝒟𝑘,𝑘(𝐺) are informative about recovering 𝒫𝒞.

In the following two subsections we establish rigorously parts of Conjecture 6.2.8.

6.2.4 𝑘-Overlap Gap Property for 𝑘 = 𝑛0.0917

We now turn to the regime 𝑘 = 𝑜(
√
𝑛). In this regime Theorem 6.2.5 and Conjecture 6.2.8

suggests the presence of 𝑘-OGP when 𝑘 = 𝑜
(︀
𝑘2 log

(︀
𝑛
𝑘2

)︀)︀
, which includes 𝑘 = 𝑘. We establish

here the result that 𝑘-OGP indeed holds as long as both 𝑘, 𝑘 are less than 𝑛𝐶 for 𝐶 ∼ 0.0917...

Theorem 6.2.9. [𝑘-Overlap Gap Property]

Suppose (log 𝑛)5 ≤ 𝑘 ≤ 𝑘 = Θ
(︀
𝑛𝐶
)︀

for some 𝐶 > 0 with 0 < 𝐶 < 1
2
−

√
6
6

∼ 0.0917.. and

furthermore 𝑘 = 𝑜
(︀
𝑘2 log

(︀
𝑛
𝑘2

)︀)︀
.

Then there are constants 𝐶0 > 0 and 0 < 𝐷1 < 𝐷2 such that for 𝑢1 := 𝐷1⌈
√︂

𝑘

log(𝑛
𝑘̄ )
⌉ and

𝑢2 := 𝐷2⌈
√︂

𝑘

log(𝑛
𝑘̄ )
⌉ and large enough 𝑛 the following holds.

(a) ⌈𝐶0
𝑘𝑘
𝑛
⌉ < 𝑢1 < 𝑢2 <

𝑘
2

and

(b) 𝑑𝑘,𝑘(𝐺)(𝑧) is non-monotonic with

min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)
(︂
𝑘

2

)︂
} − max

𝑧∈ℐ∩[𝑢1,𝑢2]
𝑑𝑘,𝑘(𝐺)(𝑧) = Ω

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

(6.11)

with high probability as 𝑛→ +∞.

In particular, 𝑘-Overlap Gap Property holds for the choice 𝜁1 = 𝑢1, 𝜁2 = 𝑢2 and 𝑟𝑛 = Γ𝑘,𝑘 (0) −
Θ

(︂
𝑘

log(𝑛
𝑘̄ )

)︂
, with high probability as 𝑛→ +∞.

The proof of the Theorem 6.2.9 is in Section 6.6.

6.2.5 𝐾-Densest Subgraph Problem for 𝐺
(︀
𝑛, 12
)︀

Of instrumental importance towards Theorem 6.2.3 and Theorem 6.2.9 is a new result on the

value of the densest 𝐾-subgraph of a vanilla Erdős-Rényi graph 𝐺0

(︀
𝑛, 1

2

)︀
. In this section we

present this result. To the best of our knowledge it is the first such result for super-logarithmic-

in-𝑛 values of 𝐾 (see [BBSV18] and the Introduction of the present paper for details).
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Let 1 ≤ 𝐾 ≤ 𝑛. We study the maximum number of edges of a subgraph of 𝐺0 ∼ 𝐺(𝑛, 1
2
)

with 𝐾 vertices, that is

𝑑ER,𝐾(𝐺0) := max
𝐴⊆𝑉 (𝐺),|𝐴|=𝐾

|E[𝐴]|. (6.12)

We establish the following result.

Theorem 6.2.10. Suppose 𝐾 = Θ
(︀
𝑛𝐶
)︀

for any constant 𝐶 ∈ (0, 1
2
). For any fixed 𝛽 ∈ (0, 3

2
)

with

𝛽 = 𝛽(𝐶) > max{3
2
−
(︂
5

2
−

√
6

)︂
1− 𝐶

𝐶
, 0}

it holds,

ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃(︂

𝐾

2

)︂
−𝑂

(︁
𝐾𝛽
√︀
log 𝑛

)︁
≤ 𝑑ER,𝐾(𝐺0) ≤ ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃(︂

𝐾

2

)︂
,

(6.13)

with high probability as 𝑛→ +∞.

The proof of the theorem is given in Section 6.3.

Remark 6.2.11. Let 𝐶crit := 5/8−
√
6/4 be the unique positive solution to 3

2
−
(︀
5
2
−
√
6
)︀

1−𝐶
𝐶

= 0.

Notice that Theorem 6.2.10 provides a qualitative different concentration result in the regime

where 𝐶 ≤ 𝐶crit and when 𝐶 > 𝐶crit. In the former case it implies that for any arbitrarily small

constant 𝛽 > 0 (6.13) holds, while in the latter case for (6.13) to hold the exponent 𝛽 needs to

be assumed to be larger than 3
2
−
(︀
5
2
−

√
6
)︀

1−𝐶
𝐶

> 0.

For any value of 𝐶 ∈ (0, 1/2) we can choose some 0 < 𝛽 = 𝛽 (𝐶) < 3
2

so that Theorem 6.2.10,

and in particular (6.13), holds for this value of 𝛽. Combining (6.13) with a direct applications of

the Taylor expansion of ℎ−1 (Lemma 6.8.3) and the Stirling’s approximation for
(︀
𝑛
𝐾

)︀
we obtain

the following asymptotic behavior of 𝑑ER,𝐾(𝐺), for any 𝐾 = Θ
(︀
𝑛𝐶
)︀
, 𝐶 ∈

(︀
0, 1

2

)︀
.

Corollary 2. Suppose 𝐾 = Θ
(︀
𝑛𝐶
)︀

for any fixed 𝐶 ∈ (0, 1
2
). Then,

𝑑ER,𝐾(𝐺0) =
𝐾2

4
+
𝐾

3
2

√︁
log
(︀
𝑛
𝐾

)︀

2
+ 𝑜

(︁
𝐾

3
2

)︁
, (6.14)

with high probability as 𝑛→ +∞.
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6.3 Proof of Theorem 6.2.10

In this section we establish Theorem 6.2.10. We first provide a proof techniques section and then

establish in separate subsections the lower and upper bounds of (6.13). Finally an intermediate

subsection is devoted to certain key lemmas for the proof.

6.3.1 Roadmap

For 𝛾 ∈ (1
2
, 1) let 𝑍𝐾,𝛾 the random variable that counts the number of 𝐾-vertex subgraphs of

𝐺 ∼ 𝐺(𝑛, 1
2
) with edge density at least 𝛾 (equivalently with number of edges at least 𝛾

(︀
𝐾
2

)︀
), that

is

𝑍𝐾,𝛾 :=
∑︁

𝐴⊂𝑉 (𝐺):|𝐴|=𝐾

1

(︂
|𝐸[𝐴]| ≥ 𝛾

(︂
𝐾

2

)︂)︂
. (6.15)

Markov’s inequality (on the left) and Paley-Zygmund inequality (on the right) give

E [𝑍𝐾,𝛾] ≥ P [𝑍𝐾,𝛾 ≥ 1] ≥ E [𝑍𝐾,𝛾]
2

E
[︀
𝑍2

𝐾,𝛾

]︀ . (6.16)

(6.16) has two important implications.

First if for some 𝛾 > 0,

lim
𝑛

E [𝑍𝐾,𝛾] = 0

then (6.16) gives 𝑍𝐾,𝛾 = 0 w.h.p. as 𝑛→ +∞ and therefore the densest 𝐾-subgraph has at most

𝛾
(︀
𝐾
2

)︀
edges w.h.p. as 𝑛→ +∞. This is called the first moment method for the random variable

𝑍𝑘,𝛾.

Second if for some 𝛾 > 0,

lim
𝑛

E [𝑍𝑘,𝛾]
2

E
[︀
𝑍2

𝐾,𝛾

]︀ = 1

then 𝑍𝐾,𝛾 ≥ 1 w.h.p. as 𝑛→ +∞ and therefore the densest-𝐾 subgraph has at least 𝛾
(︀
𝐾
2

)︀
edges

w.h.p. as 𝑛→ +∞. This is called the second moment method for the random variable 𝑍𝑘,𝛾.

Combining the two observations and a Taylor Expansion result described in Lemma 6.3.3, to
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establish Theorem 6.2.10 it suffices to establish for some 𝛼 ≤ 𝛽(𝐶)− 1
2

and

𝛾 = ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀
)︃
,

that it holds

lim
𝑛

E [𝑍𝐾,𝛾] = 0, lim
𝑛

E [𝑍𝐾,𝛾]
2

E
[︀
𝑍2

𝐾,𝛾

]︀ = 1.

We establish the upper bound provided in Theorem 6.2.10 exactly in this way, by showing

that for 𝛼 = 0 and 𝛾 = ℎ−1

(︂
log 2− log (𝑛

𝐾)
(𝐾2 )

)︂
it holds lim𝑛 E [𝑍𝐾,𝛾] = 0. We present this argument

in Subsection 6.3.2.

The lower bound appears much more challenging to obtain. A crucial difficulty is that by

writing 𝑍𝐾,𝛾 as a sum of indicators as in (6.15) and expanding E
[︀
𝑍2

𝐾,𝛾

]︀
we need to control various

complicated ways that two dense 𝐾-subgraphs overlap. This is not an uncommon difficulty in the

literature of second moment method applications where certain conditioning is usually necessary

for the second moment method to provide tight results (see e.g. [BMR+18], [GZ17a], [WX18],

[BPW18], [RXZ19] and references therein).

To control the ways dense subgraphs overlap we follow a similar, but not identical, path to

[BBSV18] which analyzed the 𝐾-densest subgraph problem for 𝐾 = Θ(log 𝑛) and also used

a conditioning technique. We do not analyze directly the second moment of 𝑍𝐾,𝛾 but instead

we focus on the second moment for another counting random variable that counts sufficiently

dense subgraphs satisfying also an additional flatness condition. The condition is established

to hold with high probability under the Erdős-Rényi structure (Lemma 6.3.4) and under this

condition the dense subgraphs overlap in more “regular" ways leading to an easier control of the

second moment. More details and the analysis of the second moment method under the flatness

condition are in Subsections 6.3.3 and 6.3.4.

6.3.2 Proof of the Upper Bound

Using (6.16) it suffices to show that for 𝛾 := ℎ−1

(︂
log 2− log (𝑛

𝐾)
(𝐾2 )

)︂
, E[𝑍𝐾,𝛾] = 𝑜(1).
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We have by linearity of expectation and (6.15)

E [𝑍𝐾,𝛾] =

(︂
𝑛

𝐾

)︂
P
[︂
|E[𝐴]| ≥ 𝛾

(︂
𝐾

2

)︂]︂
, for some 𝐴 ⊆ 𝑉 (𝐺), |𝐴| = 𝐾

=

(︂
𝑛

𝐾

)︂
P
[︂
Bin

(︂(︂
𝐾

2

)︂
,
1

2

)︂
≥ 𝛾

(︂
𝐾

2

)︂]︂
(6.17)

Using the elementary inequality
(︀
𝑛
𝐾

)︀
≤ 𝑛𝐾 we have

log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀ = 𝑂

(︂
log 𝑛

𝐾

)︂
= 𝑜(1) (6.18)

since by our assumption 𝜔(log 𝑛) = 𝐾.

By Lemma 6.8.3 and (6.18) we have,

𝛾 =
1

2
+ Ω

(︃√︃
log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃

=
1

2
+ 𝑜(1).

Therefore lim𝑛 𝛾 = 1
2

and by Stirling’s approximation,

(︂
𝛾 − 1

2

)︂√︃(︂
𝐾

2

)︂
= Ω

(︃√︃
log

(︂
𝑛

𝐾

)︂)︃
= Ω

(︂√︂
𝐾 log

𝑛

𝐾

)︂
= 𝜔(1).

Hence both assumptions of Lemma 6.8.2 are satisfied and hence (6.17) implies

E [𝑍𝐾,𝛾] ≤
(︂
𝑛

𝐾

)︂
𝑂

(︂
exp

(︂
−
(︂
𝐾

2

)︂
𝑟(𝛾,

1

2
)− Ω

(︂√︂
𝐾 log

𝑛

𝐾

)︂)︂)︂
, (6.19)

where recall that 𝑟(𝛾, 1
2
) is defined in (6.7). Now notice that for our choice of 𝛾,

𝑟(𝛾,
1

2
) = log 2− ℎ(𝛾) =

log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀ .

In particular using (6.19) we conclude that

E [𝑍𝐾,𝛾] = exp

(︂
−Ω

(︂√︂
𝐾 log

𝑛

𝐾

)︂)︂
= 𝑜(1). (6.20)

The completes the proof of the upper bound.
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6.3.3 (𝛾, 𝛿)-flatness and auxiliary lemmas

We start with appropriately defining the flatness condition mention in Subsection 6.3.1. Specif-

ically, for 𝐾 ∈ N we introduce a notion of a (𝛾, 𝛿)-flat 𝐾-vertex graph 𝐺, where 𝛾, 𝛿 ∈ (0, 1).

This generalizes the corresponding definition from [BBSV18, Section 3].

For 0 ≤ ℓ ≤ 𝐾 let

𝐷𝐾(ℓ, 𝛿) :=

⎧
⎨
⎩

√︁
2𝛾(2 + 𝛿)min

(︀(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀)︀ (︀
log
(︀
𝐾
ℓ

)︀
+ 2 log𝐾

)︀
0 ≤ ℓ < 2𝐾

3√︁
2𝛾(1 + 𝛿)min

(︀(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀)︀ (︀
log
(︀
𝐾
ℓ

)︀
+ 2 log𝐾

)︀
2𝐾
3

≤ ℓ ≤ 𝐾
(6.21)

Definition 6.3.1 ((𝛾, 𝛿)-flat graph). Call a 𝐾-vertex graph 𝐺, (𝛾, 𝛿)-flat if

∙ |𝐸[𝐺]| =
⌈︀
𝛾
(︀
𝐾
2

)︀⌉︀
and

∙ for all 𝐴 ⊂ 𝑉 (𝐺) with ℓ = |𝐴| ∈ {2, 3, . . . , 𝐾 − 1} we have |𝐸[𝐴]| ≤
⌈︀
𝛾
(︀
ℓ
2

)︀⌉︀
+𝐷𝐾(ℓ, 𝛿).

Notice that a (𝛾, 𝛿)-flat subgraph of 𝐺 ∼ 𝐺(𝑛, 1
2
) has edge density approximately 𝛾 and is

constrained to do not have arbitrarily dense subgraphs. In particular, two (𝛾, 𝛿)-flat subgraphs

of 𝐺 cannot overlap in “extremely" dense subgraphs. This property leads to an easier control

of the second moment of the random variable which counts the number of (𝛾, 𝛿)-flat subgraphs

compared to the second moment of 𝑍𝐾,𝛾 defined in Definition 6.15. Using the second moment

method we establish the existence of an appropriate (𝛾, 𝛿)-flat subgraph leading to the desired

lower bound stated in Theorem 6.2.10. Even under the flatness restriction, the control of the

second moment remains far from trivial and requires a lot of careful and technical computations.

For this reason we devote the rest of this subsection on stating and proving four auxiliary lemmas.

In the following subsection we provide the proof of the lower bound.

Lemma 6.3.2. Let 𝛼 ∈ (0, 1). Suppose 𝐾 = Θ(𝑛𝐶) for 𝐶 ∈ (0, 1).

For any 𝛾 satisfying 𝛾 = ℎ−1

(︂
log 2− log (𝑛

𝐾)−𝑂(𝐾𝛼 log𝑛)

(𝐾2 )

)︂
it holds

𝛾 =
1

2
+ (1 + 𝑜(1))

√︂
log 𝑛

𝐾

𝐾
=

1

2
+ Θ

(︃√︂
log 𝑛

𝐾

)︃
.

Furthermore,

𝑟

(︂
𝛾,

1

2

)︂
= log 2− ℎ (𝛾) = (1 + 𝑜 (1))

2 log 𝑛
𝐾

𝐾
= Θ

(︂
log 𝑛

𝐾

)︂
.
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Proof. We first observe that since 𝐾 = Θ(𝑛𝐶) for 𝐶 ∈ (0, 1) by Stirling approximation we have

log
(︀
𝑛
𝐾

)︀
= (1 + 𝑜(1))𝐾 log 𝑛

𝐾
. Therefore, since 𝐶 < 1 and 𝛼 < 1, it also holds

log
(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀ = (1 + 𝑜 (1))
𝐾 log 𝑛

𝐾
𝐾2

2

= (1 + 𝑜 (1))
2 log 𝑛

𝐾

𝐾
.

Hence 𝛾 satisfies

𝛾 = ℎ−1

(︂
log 2− (1 + 𝑜 (1))

2 log 𝑛
𝐾

𝐾

)︂
. (6.22)

By Lemma 6.8.3 we have ℎ−1 (log 2− 𝜖) = 1
2
+
(︁

1√
2
+ 𝑜 (1)

)︁√
𝜖. Since 2 log 𝑛

𝐾

𝐾
= 𝑜 (1) we have

that

𝛾 =
1

2
+ (1 + 𝑜(1))

√︂
log 𝑛

𝐾

𝐾
=

1

2
+ Θ

(︃√︂
log 𝑛

𝐾

)︃
.

Furthermore by (6.22) we directly have

𝑟

(︂
𝛾,

1

2

)︂
= log 2− ℎ (𝛾) = (1 + 𝑜 (1))

2 log 𝑛
𝐾

𝐾
= Θ

(︂
log 𝑛

𝐾

)︂
.

Lemma 6.3.3. Suppose 𝜔(log 𝑛) = 𝐾 = 𝑜(
√
𝑛). Then for any fixed 𝛼 ∈ (0, 1),

ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀
)︃(︂

𝐾

2

)︂
= ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃(︂

𝐾

2

)︂
−𝑂

(︁
𝐾𝛼+ 1

2

√︀
log 𝑛

)︁
.

Proof. Equivalently we need to show that

ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀
)︃

= ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃

−𝑂
(︁
𝐾𝛼− 3

2

√︀
log 𝑛

)︁
.

Now from Lemma 6.8.3 we know that for 𝜖 = 𝑜 (1), ℎ−1 (log 2− 𝜖) = 1
2
+ Θ(

√
𝜖) . By Stirling

approximation since 𝐾 = 𝑜 (
√
𝑛) we have

(︀
𝑛
𝐾

)︀
= Θ

(︁(︀
𝑛𝑒
𝐾

)︀𝐾)︁. Using 𝛼 ∈ (0, 1),

log

(︂
𝑛

𝐾

)︂
= Θ

(︁
𝐾 log

(︁𝑛𝑒
𝐾

)︁)︁
= 𝜔 (𝐾𝛼 log 𝑛) .
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Hence,
⃒⃒ log

(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀
⃒⃒
= 𝑂

(︂
log 𝑛

𝐾

)︂
= 𝑜 (1) .

Therefore by Lemma 6.8.3

ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀
)︃

− ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
−𝑂 (𝐾𝛼−2 log 𝑛)(︀

𝐾
2

)︀
)︃

= Θ

(︃√︃
log
(︀
𝑛
𝐾

)︀
(︀
𝐾
2

)︀ −
√︃

log
(︀
𝑛
𝐾

)︀
−𝑂(𝐾𝛼 log 𝑛)(︀

𝐾
2

)︀
)︃

= 𝑂

⎛
⎜⎜⎝
𝐾𝛼−2 log 𝑛√︂

log (𝑛
𝐾)

(𝐾2 )

⎞
⎟⎟⎠ , using

√
𝑎−

√
𝑏 = (𝑎− 𝑏) /

(︁√
𝑎+

√
𝑏
)︁

= 𝑂
(︁
𝐾𝛼− 3

2

√︀
log 𝑛

)︁
.

The proof of the Lemma is complete.

The lemma below generalizes Lemma 4 from [BBSV18].

Lemma 6.3.4. Let 𝛾, 𝛿 ∈ (0, 1). Suppose 𝐺′ is an Erdős-Rényi 𝐺
(︀
𝐾, 1

2

)︀
conditioned on having

⌈︀
𝛾
(︀
𝐾
2

)︀⌉︀
edges. Then 𝐺′ is (𝛾, 𝛿)-flat (defined in Definition 6.3.1) w.h.p. as 𝐾 → +∞.

Proof. For any 𝐶 ⊂ 𝑉 (𝐺), let 𝑒 (𝐶) := |𝐸[𝐶]|/
(︀|𝐶|

2

)︀
.

Consider any 2 ≤ ℓ ≤ 𝐾 − 1 and any 𝐶 ⊂ 𝑉 (𝐺) with |𝐶| = ℓ. By identical reasoning we

have from equation (4), page 6 in [BBSV18] that for any 𝑟 > 0,

P
(︂
|𝐸 [𝐶] | ≥ 𝛾

(︂
ℓ

2

)︂
+ 𝑟

)︂
≤ exp

(︃
− 𝑟(𝑟 − 1)

2𝛾min(
(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀
)

)︃
.
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Therefore by union bound,

(︂
𝐾

ℓ

)︂
P
(︂
|𝐸 [𝐶] | ≥ 𝛾

(︂
ℓ

2

)︂
+𝐷𝐾 (ℓ, 𝛿)

)︂

≤
(︂
𝐾

ℓ

)︂ (ℓ2)∑︁

𝑟=𝐷𝐾(ℓ,𝛿)

exp

(︃
− 𝑟(𝑟 − 1)

2𝛾min(
(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀
)

)︃

≤ exp

(︃
log

(︂
𝐾

ℓ

)︂
+ log

(︂
ℓ

2

)︂
− (𝐷𝐾 (ℓ, 𝛿)− 1)2

2𝛾min(
(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀
)

)︃

≤ exp

(︃
log

(︂
𝐾

ℓ

)︂
+ 2 log𝐾 − (𝐷𝐾 (ℓ, 𝛿)− 1)2

2𝛾min(
(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀
,
(︀
ℓ
2

)︀
)

)︃
.

Therefore plugging in the value for 𝐷𝐾 (ℓ, 𝛿) we conclude that for ℓ < 2𝐾
3

,

(︂
𝐾

ℓ

)︂
P
(︂
|𝐸 [𝐶] | ≥ 𝛾

(︂
ℓ

2

)︂
+𝐷𝐾 (ℓ, 𝛿)

)︂
≤ exp(−(1 + 𝛿) log

(︂
𝐾

ℓ

)︂
)

and for ℓ ≥ 2𝐾
3

,

(︂
𝐾

ℓ

)︂
P
(︂
|𝐸 [𝐶] | ≥ 𝛾

(︂
ℓ

2

)︂
+𝐷𝐾 (ℓ, 𝛿)

)︂
≤ exp(−𝛿 log

(︂
𝐾

ℓ

)︂
).

Using union bound and the above two inequalities we have that 𝐺′ is not (𝛾, 𝛿)-flat with proba-

bility at most

𝐾−1∑︁

ℓ=2

(︂
𝐾

ℓ

)︂
P
(︂
|𝐸 [𝐶] | ≥ 𝛾

(︂
ℓ

2

)︂
+𝐷𝐾 (ℓ, 𝛿)

)︂

≤
⌊ 2𝐾

3
⌋∑︁

ℓ=1

(︂
𝐾

ℓ

)︂−1−𝛿

+
𝐾−1∑︁

ℓ=⌈ 2𝐾
3

⌉

(︂
𝐾

ℓ

)︂−𝛿

(6.23)

Using now that for ℓ satisfying 2𝑘
3
≤ ℓ ≤ 𝐾 −𝐾

𝛿
2 we have

(︂
𝐾

ℓ

)︂
=

(︂
𝐾

𝐾 − ℓ

)︂
≥
(︂

𝐾

𝐾 − ℓ

)︂𝐾−ℓ

≥ 3𝐾−ℓ ≥ 3𝐾
𝛿
2
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and otherwise if ℓ ≤ 2𝐾
3

,
(︀
𝐾
ℓ

)︀
≥
(︀
𝐾
1

)︀
= 𝐾 the right hand side of (6.23) is at most

𝐾𝐾−1−𝛿 +𝐾3−𝐾
𝛿
2 +𝐾

𝛿
2𝐾−𝛿 ≤ 𝐾−𝛿 +𝐾3−𝐾

𝛿
2 +𝐾− 𝛿

2

which is 𝑜 (1). The proof of the Lemma is complete.

Assume 𝐺 ∼ 𝐺
(︀
𝑛, 1

2

)︀
and 𝐾 ≤ 𝑛. For 2 ≤ ℓ ≤ 𝐾 − 1, 0 ≤ 𝐿 ≤

(︀
ℓ
2

)︀
and 𝐴,𝐵 ⊂ 𝑉 (𝐺) with

|𝐴| = 𝐾, |𝐵| = 𝐾 and |𝐴 ∩𝐵| = ℓ let

𝑔ℓ(𝐿) := P
(︂
|E[𝐴]| = |E[𝐵]| = ⌈𝛾

(︂
𝐾

2

)︂
⌉, |E[|𝐴 ∩𝐵|]| = 𝐿

)︂
. (6.24)

Lemma 6.3.5. For 2 ≤ ℓ ≤ 𝐾 − 1 and 𝛾 ∈ (1
2
, 1) let 𝜆 := exp

(︂
2𝛾−1
1−𝛾

+ 1

𝛾[(𝐾2 )−(
ℓ
2)]

)︂
. Then

(1) for any 𝑟 ≥ 0,

𝑔ℓ(
⌈︀
𝛾
(︀
ℓ
2

)︀⌉︀
+ 𝑟)

P
(︀
|E[𝐴]| =

⌈︀
𝛾
(︀
𝐾
2

)︀⌉︀)︀2 ≤ 𝜆𝑟 exp

(︂(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(1)

)︂
.

(2) for any 𝑟 ≤ 0,
𝑔ℓ(
⌈︀
𝛾
(︀
ℓ
2

)︀⌉︀
+ 𝑟)

P
(︀
|E[𝐴]| =

⌈︀
𝛾
(︀
𝐾
2

)︀⌉︀)︀2 ≤ exp

(︂(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(1)

)︂
.

Proof. This follows from the proof of [BBSV18, Lemma 6] for 𝑝 = 1
2

and minor adjustment in the

choice of 𝜆. The minor adjustment is justified by the second displayed equation on Page 9 in the

aforementioned paper. In that equation if we apply the elementary inequality 1 + 𝑥 ≤ 𝑒𝑥 once

for 𝑥 = 2𝛾−1
1−𝛾

and once for 𝑥 = 1

𝛾[(𝐾2 )−(
ℓ
2)]

we obtain the new choice of 𝜆. With this modification,

following the proof of [BBSV18, Lemma 6], mutatis mutandis, gives the Lemma.

6.3.4 Proof of the Lower Bound

We turn now to the lower bound of (6.13).

For 𝛾 ∈ (1
2
, 1) we again define 𝑍𝐾,𝛾 as in (6.15). Furthermore for any 𝛿 > 0, let 𝑍𝐾,𝛾,𝛿 the

243



random variable that counts the number of (𝛾, 𝛿)-flat 𝐾-vertex subgraphs of 𝐺;

𝑍𝐾,𝛾,𝛿 :=
∑︁

𝐴⊂𝑉 (𝐺):|𝐴|=𝐾

1 (𝐴 is (𝛾, 𝛿)-flat) . (6.25)

Notice that clearly by definition of (𝛾, 𝛿)-flatness we have that for any choice of 𝐾, 𝛾 and any

𝛿 > 0 almost surely

𝑍𝐾,𝛾 ≥ 𝑍𝐾,𝛾,𝛿. (6.26)

We establish the following proposition.

Proposition 6.3.6. Suppose that 𝐾 = Θ(𝑛𝐶) for some constant 𝐶 ∈ (0, 1
2
). Let any 𝛼 ∈ (0, 1)

satisfying

𝛼 > 1−
(︂
5

2
−
√
6

)︂
1− 𝐶

𝐶
(6.27)

and set

𝛾 = ℎ−1

(︃
log 2− log

(︀
𝑛
𝐾

)︀
−𝐾𝛼 log 𝑛(︀
𝐾
2

)︀
)︃
.

Then there exists 𝛿 > 0 small enough such that

E
[︂(︁
𝑍𝐾,𝛾,𝛿

)︁2]︂

E
[︁
𝑍𝐾,𝛾,𝛿

]︁2 = 1 + 𝑜 (1) . (6.28)

In particular, 𝑍𝐾,𝛾 ≥ 𝑍𝐾,𝛾,𝛿 ≥ 1 with high probability as 𝑛→ +∞.

Using this proposition for 𝛼 := 𝛽(𝐶) + 1
2

and the Taylor expansion argument from Lemma

6.3.3 we conclude the desired lower bound of Theorem 6.2.10.

Proof of Proposition 6.3.6. Notice that 𝑍𝐾,𝛾,𝛿 ≥ 1 with high probability as 𝑛 → +∞ follows by

(6.28) using Paley-Zigmund inequality. Thus we focus on establishing (6.28).

We begin by choosing 𝛿 > 0 to satisfy

1− 𝐶(2𝛼− 1) + 4(
√︀
(1− 𝛼) + 𝛿)

√︀
𝐶(1− 𝐶)− 2(1− 𝐶) < 0. (6.29)
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To establish the existence of such 𝛿 notice that (6.27) by elementary algebra is equivalent with

𝐶(1− 𝛼) < (

√︂
3

2
− 1)2(1− 𝐶)

or

√︀
𝐶(1− 𝛼) +

√
1− 𝐶 <

√︂
3

2
(1− 𝐶)

which by squaring both sides yields

𝐶(1− 𝛼) + 1− 𝐶 + 2
√︀
(1− 𝛼)

√︀
𝐶(1− 𝐶) <

3

2
(1− 𝐶)

or equivalently by multiplying both sides by 2 and rearranging

1− 𝐶(2𝛼− 1) + 4
√︀
(1− 𝛼)

√︀
𝐶(1− 𝐶)− 2(1− 𝐶) < 0.

Now, since 𝐶 ∈ (0, 1), the last inequality implies the existence of some sufficiently small 𝛿 > 0

such that (6.29) holds.

For an arbitrary 𝐾-vertex subset 𝐴 ⊆ 𝑉 (𝐺) and linearity of expectation, (6.25) gives

E[𝑍𝐾,𝛾,𝛿] =

(︂
𝑛

𝐾

)︂
P (𝐴 is (𝛾, 𝛿)-flat)

= (1− 𝑜 (1))

(︂
𝑛

𝐾

)︂
P
(︂
|E[𝐴]| =

⌈︂
𝛾

(︂
𝐾

2

)︂⌉︂)︂
, using Lemma 6.3.4

=

(︂
𝑛

𝐾

)︂
exp

(︂
−
(︂
𝐾

2

)︂
𝑟(𝛾,

1

2
)− 1

2
log

(︂
𝐾

2

)︂
+𝑂 (1)

)︂
, using Lemma 6.8.2

= exp

(︂
log

(︂
𝑛

𝐾

)︂
−
(︂
𝐾

2

)︂
𝑟(𝛾,

1

2
)− 1

2
log𝐾 +𝑂(1)

)︂
. (6.30)

Using that for our choice of 𝛾,

𝑟(𝛾,
1

2
) =

log
(︀
𝑛
𝐾

)︀
−𝐾𝛼 log 𝑛(︀
𝐾
2

)︀
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we conclude that,

E[𝑍𝐾,𝛾,𝛿] = exp

(︂
𝐾𝛼 log 𝑛− 1

2
log𝐾 +𝑂(1)

)︂
= exp (Ω (𝐾𝛼 log 𝑛)) , (6.31)

since 𝐾𝛼 = Θ(𝑛𝐶𝛼) = 𝜔(1).

We now proceed to the second moment calculation. For 𝐴 ⊂ 𝑉 (𝐺) with |𝐴| = 𝐾 define the

events 𝐸𝐴 := {𝐴 is (𝛾, 𝛿)-flat} and 𝐸 ′
𝐴 := {|𝐸[𝐴]| =

⌈︀
𝛾
(︀
𝐾
2

)︀⌉︀
}. Note

𝑍𝐾,𝛾,𝛿 =
∑︁

𝐴⊂𝑉 (𝐺),|𝐴|=𝐾

1(𝐸𝐴).

For ℓ = |𝐴 ∩𝐵| we have via standard expansion,

E[(𝑍𝐾,𝛾,𝛿)
2]

E[𝑍𝐾,𝛾,𝛿]2
− 1

=
E[(𝑍𝐾,𝛾,𝛿)

2]− E[𝑍𝐾,𝛾,𝛿]
2

E[𝑍𝐾,𝛾,𝛿]2

=
𝐾∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1P (𝐸𝐴 ∩ 𝐸𝐵)− P (𝐸𝐴)
2

P (𝐸𝐴)
2

=
𝐾−1∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1P (𝐸𝐴 ∩ 𝐸𝐵)− P (𝐸𝐴)
2

P (𝐸𝐴)
2 +

1− P (𝐸𝐴)

E[𝑍𝐾,𝛾,𝛿]

≤
𝐾−1∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1P (𝐸𝐴 ∩ 𝐸𝐵)

P (𝐸𝐴)
2 + 𝑜(1), since by (6.31) E[𝑍𝑘,𝛾,𝛿] = 𝜔(1)

≤ (1 + 𝑜 (1))
𝐾−1∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1P (𝐸𝐴 ∩ 𝐸𝐵)

P (𝐸 ′
𝐴)

2 + 𝑜(1), from Lemma 6.3.4.

Now for fixed ℓ ∈ {2, 3, . . . , 𝐾 − 1} and (𝛾, 𝛿)-flat 𝐾-subgraphs 𝐴,𝐵 with ℓ = |𝐴 ∩ 𝐵| we

have from the definition of (𝛾, 𝛿)-flatness that the graph induced by 𝐴 ∩ 𝐵 contains at most
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⌈︀
𝛾
(︀
𝑘
2

)︀⌉︀
+𝐷𝐾(ℓ, 𝛿) edges. In particular,

P (𝐸𝐴 ∩ 𝐸𝐵)

P (𝐸 ′
𝐴)

2 =

⌈𝛾(ℓ2)⌉+𝐷𝐾(ℓ,𝛿)∑︁

𝐿=0

P (𝐸𝐴 ∩ 𝐸𝐵, 𝐸[𝐴 ∩𝐵] = 𝐿)

P (𝐸 ′
𝐴)

2

≤
⌈𝛾(ℓ2)⌉+𝐷𝐾(ℓ,𝛿)∑︁

𝐿=0

P (𝐸 ′
𝐴 ∩ 𝐸 ′

𝐵, 𝐸[𝐴 ∩𝐵] = 𝐿)

P (𝐸 ′
𝐴)

2 , using that 𝐸𝐴 ⊆ 𝐸 ′
𝐴, 𝐸𝐵 ⊆ 𝐸 ′

𝐵

=

⌈𝛾(ℓ2)⌉+𝐷𝐾(ℓ,𝛿)∑︁

𝐿=0

𝑔ℓ(𝐿)

P (𝐸 ′
𝐴)

2 , using notation (6.24)

≤
⌈𝛾(ℓ2)⌉+𝐷𝐾(ℓ,𝛿)∑︁

𝐿=0

𝜆𝐷𝐾(ℓ,𝛿) exp

(︂(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(1)

)︂
, using Lemma 6.3.5 and 𝜆 ≥ 1

≤
(︂
ℓ

2

)︂
𝜆𝐷𝐾(ℓ,𝛿) exp

(︂(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(1)

)︂

= exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(log ℓ)

)︂
.

Therefore we conclude

E[(𝑍𝐾,𝛾,𝛿)
2]

E[𝑍𝐾,𝛾,𝛿]2
≤ 1 +

𝐾−1∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(log ℓ)

)︂

+ 𝑜(1).

We proceed from now on in two steps to complete the proof. First we show that for some

sufficiently small constant 𝛿1 > 0,

⌊𝛿1𝐾⌋∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂(log ℓ)

)︂
= 𝑜(1). (6.32)

In the second step we show that for the constant 𝛿1 > 0 chosen in the first step,

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂 (log 𝑛)

)︂
= 𝑜(1). (6.33)

Note here that for these values of ℓ for the second step we have replaced 𝑂(log ℓ) with the

equivalent bound 𝑂 (log𝐾) = 𝑂 (log 𝑛) since 𝐾 = Θ(𝑛𝐶) for 𝐶 > 0.
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First Step, proof of (6.32): For the combinatorial term we use a simple inequality derived

from Stirling’s approximation (see e.g. page 11 in [BBSV18]),

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

≤ (1 + 𝑜(1))

(︂
𝐾2

𝑛

)︂ℓ

. (6.34)

We now bound the terms in the exponent. Plugging in the value of 𝜆 from Lemma 6.3.5 we have

𝐷𝐾(ℓ, 𝛿) log 𝜆 =
𝐷𝐾(ℓ, 𝛿)

𝛾
[︀(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀]︀ + 2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿).

By the definition of 𝐷𝐾(ℓ, 𝛿) (6.21) we have

𝐷𝐾(ℓ, 𝛿)

𝛾
[︀(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀]︀ = 𝑂

(︃√︃
log
(︀
𝐾
ℓ

)︀
+ log𝐾(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀
)︃

≤ 𝑂

(︃√︃
𝐾(︀

𝐾
2

)︀
−
(︀
𝐾−1
2

)︀
)︃

= 𝑂 (1) ,

since ℓ ≤ 𝛿1𝐾 ≤ 𝐾 − 1, assuming 𝛿1 < 1. From Lemma 6.3.2 we have 𝛾 = 1
2
+ Θ

(︂√︁
log𝑛
𝐾

)︂
.

Furthermore, by (6.21), 𝐾 = Θ
(︀
𝑛𝐶
)︀

and
(︀
𝐾
ℓ

)︀
≤ 𝐾ℓ we have

𝐷𝐾(ℓ, 𝛿) = 𝑂

(︃√︃
ℓ2
(︂
log

(︂
𝐾

ℓ

)︂
+ log𝐾

)︂)︃
= 𝑂

(︁√︀
ℓ3 log 𝑛

)︁
.

Combining the two last equalities we conclude

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿) = 𝑂

(︂
ℓ3/2 log 𝑛√

𝐾

)︂
. (6.35)

Finally, again by Lemma 6.3.2, 𝑟(𝛾, 1
2
) = Θ( log𝑛

𝐾
) and therefore

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) = 𝑂

(︂
ℓ2 log 𝑛

𝐾

)︂
. (6.36)

Combining (6.34), (6.35) and (6.36) we conclude that for any 𝛿1 > 0, supposing ℓ < 𝛿1𝐾 we get
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(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂 (log ℓ)

)︂
(6.37)

= exp

[︂
−ℓ log

(︁ 𝑛

𝐾2

)︁
+𝑂

(︂
ℓ3/2 log 𝑛√

𝐾

)︂
+𝑂

(︂
ℓ2 log 𝑛

𝐾

)︂
+𝑂 (log ℓ)

]︂

= exp

[︃
−ℓ log 𝑛

(︃
1− 2𝐶 −𝑂

(︃√︂
ℓ

𝐾

)︃
−𝑂

(︂
ℓ

𝐾

)︂
−𝑂

(︂
log ℓ

ℓ log 𝑛

)︂)︃]︃
, using 𝐾 = Θ(𝑛𝐶)

≤ exp

[︂
−ℓ log 𝑛

(︂
1− 2𝐶 −𝑂

(︁√︀
𝛿1

)︁
−𝑂 (𝛿1)−𝑂

(︂
log ℓ

ℓ log 𝑛

)︂)︂]︂
, using ℓ ≤ 𝛿1𝐾

≤ exp

[︂
−ℓ log 𝑛

(︂
1− 2𝐶 −𝑂

(︁√︀
𝛿1

)︁
−𝑂 (𝛿1)−𝑂

(︂
1

log 𝑛

)︂)︂]︂
, (6.38)

where we have used log ℓ ≤ ℓ for all ℓ ≥ 1. Since 𝐶 < 1
2

we choose 𝛿1 > 0 small enough but

constant such that for some 𝛿2 > 0 and large enough 𝑛,

1− 2𝐶 −𝑂
(︁√︀

𝛿1

)︁
−𝑂 (𝛿1)−𝑂

(︂
1

log 𝑛

)︂
> 𝛿2. (6.39)

Hence for this choice of constants 𝛿1, 𝛿2 > 0 if ℓ ≤ 𝛿1𝐾 using (6.38) and (6.39) we conclude that

the expression (6.37) is at upper bounded by

exp (−𝛿2ℓ log 𝑛) = 𝑛−𝛿2ℓ.

Therefore we have,

⌊𝛿1𝐾⌋∑︁

ℓ=2

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂(︂
𝑛

𝐾

)︂−1

exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆+

(︂
ℓ

2

)︂
𝑟(𝛾,

1

2
) +𝑂 (log ℓ)

)︂
≤
∑︁

ℓ≥1

𝑛−𝛿2ℓ = 𝑂
(︀
𝑛−𝛿2

)︀
.

This completes the proof of (6.32).

Second step, proof of (6.33): For the second step we start by multiplying both numera-

tor and denominator of the left hand side of (6.33) with the two sides of (6.30); E
[︁
𝑍𝐾,𝛾,𝛿

]︁
=
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(︀
𝑛
𝐾

)︀
exp

(︀
−
(︀
𝐾
2

)︀
𝑟(𝛾, 1

2
) +𝑂 (log 𝑛)

)︀
, to get that it suffices to show

1

E[𝑍𝐾,𝛾,𝛿]

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆−

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
𝑟(𝛾,

1

2
) +𝑂 (log 𝑛)

)︂
= 𝑜(1).

Since by equation (6.31) we have E[𝑍𝑘,𝛾,𝛿] ≥ exp (𝐷0𝐾
𝛼 log 𝑛) for some universal constant 𝐷0 > 0

and 𝐾 = 𝜔(1) it suffices that

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆−

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
𝑟(𝛾,

1

2
)−𝐷0𝐾

𝛼 log 𝑛

)︂
= 𝑜(1).

Plugging in the value of 𝜆 we have

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
exp

(︂
𝐷𝐾(ℓ, 𝛿) log 𝜆−

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
𝑟(𝛾,

1

2
)−𝐷0𝐾

𝛼 log 𝑛

)︂

which is of the order

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂

× exp

[︃
𝐷𝐾(ℓ, 𝛿)

𝛾
[︀(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀]︀ + 2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿)−

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
𝑟(𝛾,

1

2
)−𝐷0𝐾

𝛼
√︀
log 𝑛

]︃

By (6.21) we have

𝐷𝐾(ℓ, 𝛿)

𝛾
[︀(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀]︀ = 𝑂

(︃√︃
log
(︀
𝐾
ℓ

)︀
+ log𝐾(︀

𝐾
2

)︀
−
(︀
ℓ
2

)︀
)︃

≤ 𝑂

(︃√︃
𝐾(︀

𝐾
2

)︀
−
(︀
𝐾−1
2

)︀
)︃

= 𝑂 (1) , (6.40)

since ℓ ≤ 𝐾 − 1. Furthermore by Lemma 6.3.2,

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
𝑟(𝛾,

1

2
) ≥

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
(1− 𝑜(1))

2 log( 𝑛
𝐾
)

𝐾

=

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
2 log( 𝑛

𝐾
)

𝐾
− 𝑜 ((𝐾 − ℓ) log 𝑛) (6.41)
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Hence, combining (6.40) and (6.41) we conclude that it suffices to show

𝐾−1∑︁

ℓ=⌈𝛿1𝐾⌉
exp [𝐹 (ℓ)] = 𝑜(1) (6.42)

where 𝐹 (ℓ) equals

log(

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
) +

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿)

−
(︂(︂

𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
2 log( 𝑛

𝐾
)

𝐾
−𝐷0𝐾

𝛼 log 𝑛+ 𝑜 ((𝐾 − ℓ) log 𝑛) . (6.43)

Now we separate three cases to study 𝐹 (ℓ).

Case 1 (large values of ℓ) : We assume 𝐾 − 1 ≥ ℓ ≥ 𝐾 − 𝑐1𝐾
𝛼 log 𝑛, where 𝑐1 > 0 is a

universal constant defined below.

In this case we bound the combinatorial term using
(︀
𝐾
ℓ

)︀
≤ 𝐾𝐾−ℓ and

(︀
𝑛−𝐾
𝐾−ℓ

)︀
≤ 𝑛𝐾−ℓ to

conclude

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
≤ 𝐾𝐾−ℓ𝑛𝐾−ℓ = exp (𝑂 [(𝐾 − ℓ) log 𝑛]) . (6.44)

Furthermore,

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿) = 𝑂

(︃
(2𝛾 − 1)

√︃(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂(︂
log

(︂
𝐾

ℓ

)︂
+ log𝐾

)︂)︃
, using (6.21)

= 𝑂

(︃
(2𝛾 − 1)

√︃
(𝐾 − ℓ) (𝐾 + ℓ− 1)

(︂
log

(︂
𝐾

ℓ

)︂
+ log𝐾

)︂)︃

≤ 𝑂

(︃√︂
log 𝑛

𝐾

√︀
(𝐾 − ℓ)𝐾 · (𝐾 − ℓ) log𝐾

)︃
, from Lemma 6.3.2,

(︂
𝐾

ℓ

)︂
≤ 𝐾𝐾−ℓ

≤ 𝑂 [(𝐾 − ℓ) log 𝑛] , (6.45)
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Therefore using (6.45) and (6.46) for ℓ with 𝐾 − 1 ≥ ℓ ≥ 𝐾 − 𝑐1𝐾
𝛼 log 𝑛 we have

𝐹 (ℓ) ≤ 𝑂 ((𝐾 − ℓ) log 𝑛)−𝐷0𝐾
𝛼 log 𝑛

≤ 𝐶 (𝐾 − ℓ) log 𝑛−𝐷0𝐾
𝛼 log 𝑛, for some universal constant 𝐶 > 0

≤ (𝐶𝑐1 −𝐷0)𝐾
𝛼 log 𝑛, by the assumption on ℓ

≤ −𝐷0

2
𝐾𝛼 log 𝑛, by choosing 𝑐1 := 𝐷0/2𝐶,

which gives

𝐾−1∑︁

ℓ=⌈𝐾−𝑐1𝐾𝛼 log𝑛⌉
exp [𝐹 (ℓ)] = 𝑂

(︂
exp

(︂
log𝐾 − 𝐷0

2
𝐾𝛼 log 𝑛

)︂)︂
= 𝑜 (1) (6.46)

where the last equality is because 𝐾 = 𝜔(1).

Case 2 (moderate values of ℓ) : (1 − 𝛿′)𝐾 ≤ ℓ ≤ 𝐾 − 𝑐1𝐾
𝛼 log 𝑛, where 𝑐1 > 0 is defined

in Case 1 and 1
3
> 𝛿′ > 0 is a sufficiently small but constant positive number such that

1− 𝐶(2𝛼− 1) + 4(
√︀

(1− 𝛼) + 𝛿)
√︀
𝐶(1− 𝐶)− 2(1− 𝛿′)(1− 𝐶) < −𝛿′. (6.47)

Note that such a 1
3
> 𝛿′ > 0 exists because of our choice of 𝛿 satisfying (6.29) and because 𝐶 < 1.

We start with the standard
(︀
𝐾
ℓ

)︀
≤
(︀

𝐾𝑒
𝐾−ℓ

)︀𝐾−ℓ and
(︀
𝑛−𝐾
𝐾−ℓ

)︀
≤
(︁

(𝑛−𝐾)𝑒
𝐾−ℓ

)︁𝐾−ℓ

to conclude

log

(︂(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂)︂
≤ (𝐾 − ℓ) log

(︂
𝑛𝐾𝑒2

(𝐾 − ℓ)2

)︂
(6.48)

≤ (1− 𝐶(2𝛼− 1) + 𝑜(1)) (𝐾 − ℓ) log 𝑛, (6.49)

where for the last step we used 𝐾 − ℓ ≥ Ω (𝐾𝛼) and that 𝐾 = Θ(𝑛𝐶). Furthermore for this

252



values of ℓ we have ℓ > 2𝐾
3

. Therefore from (6.21),

𝐷𝐾(ℓ, 𝛿) ≤ (1 + 𝛿)

√︃
2𝛾

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
log

(︂
2𝐾

(︂
𝑘

ℓ

)︂)︂

≤ (1 + 𝛿 + 𝑜(1))

√︃(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
log

(︂
2𝐾

(︂
𝐾

ℓ

)︂)︂
, using Lemma 6.3.2

≤ (1 + 𝛿 + 𝑜(1)))

√︃(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂(︂
(𝐾 − ℓ) log(

𝐾𝑒

𝐾 − ℓ
) + 2 log𝐾

)︂

≤ (1 + 𝛿 + 𝑜(1)) (𝐾 − ℓ)
√︀
𝐾 log (𝑂 (𝐾1−𝛼)), (6.50)

(where we used
(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂
≤ 𝐾(𝐾 − ℓ), 𝐾 − ℓ ≥ Ω(𝐾𝛼))

≤
(︀√

1− 𝛼 + 𝛿 + 𝑜(1)
)︀
(𝐾 − ℓ)

√︀
𝐾 log𝐾 (6.51)

From Lemma 6.3.2 we have

2𝛾 − 1

1− 𝛾
= (4 + 𝑜(1))

√︂
log 𝑛

𝐾

𝐾
.

Hence combining it with (6.52),

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿) ≤

(︀√
1− 𝛼 + 𝛿 + 𝑜(1)

)︀
4(𝐾 − ℓ)

√︂
log 𝑛

𝐾

𝐾

√︀
𝐾 log𝐾

= 4
(︁√︀

(1− 𝛼) + 𝛿 + 𝑜(1)
)︁
(𝐾 − ℓ)

√︂
log(

𝑛

𝐾
) log𝐾 (6.52)

Now by dropping the term −𝐷0𝐾
𝛼 log 𝑛 < 0, 𝐹 (ℓ) is at most

log(

(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂
) +

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿)−

(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂
2 log( 𝑛

𝐾
)

𝐾
+ 𝑜 ((𝐾 − ℓ) log 𝑛) .
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which using (6.50), (6.53) is at most 1 + 𝑜 (1) times

(𝐾 − ℓ)

×
[︃
(1− 𝐶(2𝛼− 1)) log 𝑛+ 4

(︁√︀
(1− 𝛼) + 𝛿

)︁√︂
log(

𝑛

𝐾
) log𝐾 − 2

(︀(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀)︀
log 𝑛

𝐾

𝐾(𝐾 − ℓ)
+ 𝑜(log 𝑛)

]︃

≤ (𝐾 − ℓ)

×
[︂
(1− 𝐶(2𝛼− 1)) log 𝑛+ 4

(︁√︀
(1− 𝛼) + 𝛿

)︁√︂
log(

𝑛

𝐾
) log𝐾 − 2 (1− 𝛿′) log

𝑛

𝐾
+ 𝑜(log 𝑛)

]︂

= (𝐾 − ℓ) log 𝑛

[︃
1− 𝐶(2𝛼− 1) + 4

(︁√︀
(1− 𝛼) + 𝛿

)︁ √︀log( 𝑛
𝐾
) log𝐾

log 𝑛
− 2 (1− 𝛿′)

log 𝑛
𝐾

log 𝑛
+ 𝑜(1)

]︃
,

where for the last inequality we used that for ℓ ≥ (1− 𝛿′)𝑘,
(︀
𝑘
2

)︀
−
(︀
ℓ
2

)︀
≥ (1− 𝛿′ − 𝑜 (1))𝑘(𝑘 − ℓ).

Using that 𝐾 = Θ
(︀
𝑛𝐶
)︀

we conclude,

𝐹 (ℓ) ≤
[︁
(1− 𝐶(2𝛼− 1)) + 4

(︁√︀
(1− 𝛼) + 𝛿

)︁√︀
𝐶(1− 𝐶)− 2 (1− 𝛿′) (1− 𝐶) + 𝑜(1)

]︁
(𝐾 − ℓ) log 𝑛.

From (6.48) we know that for large 𝑛

(1− 𝐶(2𝛼− 1)) + 4
(︁√︀

(1− 𝛼) + 𝛿
)︁√︀

𝐶(1− 𝐶)− 2 (1− 𝛿′) (1− 𝐶) + 𝑜(1) < −𝛿′.

Therefore we conclude for all ℓ with (1− 𝛿′)𝐾 ≤ ℓ ≤ 𝐾 − 𝑐1𝐾
𝛼 log 𝑛

𝐹 (ℓ) ≤ −𝛿′ (𝐾 − ℓ) log 𝑛 ≤ −Ω
(︀
𝐾𝛼 (log 𝑛)2

)︀
.

Hence,

⌊𝐾−𝑐1𝐾𝛼 log𝑛⌋∑︁

ℓ=⌈(1−𝛿′)𝐾⌉
exp [𝐹 (ℓ)] = 𝑂

(︀
𝐾 exp

(︀
−Ω(𝐾𝛼(log 𝑛)2

)︀)︀
= 𝑂

(︀
exp

(︀
log 𝑛− Ω(𝐾𝛼(log 𝑛)2

)︀)︀
= 𝑜(1),

(6.53)

where the last equality is because 𝐾 = Θ(𝑛𝐶) for 𝐶 > 0.
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Case 3 (small values of ℓ) : 𝛿1𝐾 ≤ ℓ ≤ (1 − 𝛿′)𝐾 where 𝛿′ is defined in Case 2 and 𝛿1 in

Part 1.

Similar to (6.49) we have

log

(︂(︂
𝐾

ℓ

)︂(︂
𝑛−𝐾

𝐾 − ℓ

)︂)︂
≤ (𝐾 − ℓ) log

(︂
𝑛𝐾𝑒2

(𝐾 − ℓ)2

)︂

≤ (1 + 𝑜(1)) (𝐾 − ℓ) log
𝑛

𝐾
, (6.54)

where we have used for the last inequality that ℓ = Θ(𝐾).

Furthermore using (6.21) and Lemma 6.3.2 we have

2𝛾 − 1

1− 𝛾
𝐷𝐾(ℓ, 𝛿) ≤ 𝑂

(︃√︂
log 𝑛

𝐾

√︃(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂(︂
log

(︂
𝐾

ℓ

)︂
+ log𝐾

)︂)︃

≤ 𝑂

(︃√︂
log 𝑛

𝐾

√︃(︂(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂)︂(︂
(𝐾 − ℓ) log(

𝐾𝑒

𝐾 − ℓ
) + log𝐾

)︂)︃

≤ 𝑂

(︃√︂
log 𝑛

𝐾
(𝐾 − ℓ)

√
𝐾

)︃
, using 𝐾 − ℓ = Θ(𝐾),

(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂
≤ 𝐾(𝐾 − ℓ)

= 𝑜 ((𝐾 − ℓ) log 𝑛) .

Combining it with (6.55) we have that 𝐹 (ℓ) is at most

(1 + 𝑜(1))

[︃
(𝐾 − ℓ) log(

𝑛

𝐾
) + 𝑜((𝐾 − ℓ) log 𝑛)− 2

(︀(︀
𝐾
2

)︀
−
(︀
ℓ
2

)︀)︀

𝐾
(log

𝑛

𝐾
)

]︃

≤(*) (1 + 𝑜(1)) (𝐾 − ℓ)

[︂
log(

𝑛

𝐾
) + 𝑜(log 𝑛)− 2

(︂
1 + 𝛿1

2

)︂
(log

𝑛

𝐾
)

]︂

≤ (𝐾 − ℓ) log 𝑛

(︂
1− 𝐶 − 2

(︂
1 + 𝛿1

2

)︂
(1− 𝐶) + 𝑜(1)

)︂
, using 𝐾 = Θ(𝑛𝑐)

= (𝐾 − ℓ) log 𝑛 (−𝛿1 (1− 𝐶) + 𝑜(1)) , (6.55)

where to derive (*) we use that for ℓ ≥ 𝛿1𝐾,

(︂
𝐾

2

)︂
−
(︂
ℓ

2

)︂
≤ (

1 + 𝛿1 + 𝑜(1)

2
)𝐾(𝐾 − ℓ).

Since 𝛿1 (1− 𝐶) > 0 we conclude from (6.56) that for all ℓ with 𝛿1𝐾 ≤ ℓ ≤ (1− 𝛿′)𝐾 and large
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enough 𝑛,

𝐹 (ℓ) ≤ −Θ(𝐾 log 𝑛)

Hence,

⌊(1−𝛿′)𝐾⌋∑︁

ℓ=⌈𝛿1𝐾⌉
exp [𝐹 (ℓ)] ≤ 𝑂 (𝐾 exp [(log 𝑛−Θ(𝐾 log 𝑛))) ≤ 𝑂 (exp (log 𝑛−Θ(𝐾 log 𝑛))) = 𝑜 (1) .

(6.56)

Combining (6.47), (6.54) and (6.57) we conclude the proof of (6.33). This completes the proof

of the Proposition and of the Theorem.

6.4 Proofs for First Moment Curve Bounds

6.4.1 Proof of first part of Proposition 6.2.3

Proof of first part of Proposition 6.2.3. If 𝑧 = 𝑘 = 𝑘 then trivially

𝑑𝑘,𝑘(𝐺)(𝑘) = |𝐸[𝒫𝒞]| =
(︂
𝑘

2

)︂
= Γ𝑘,𝑘(𝑘)

almost surely.

Otherwise, we fix some 𝑧 ∈ {⌊𝑘𝑘
𝑛
⌋, ⌊𝑘𝑘

𝑛
⌋ + 1, . . . , 𝑘}. Since 𝑧 = 𝑘 = 𝑘 does not hold, we have

𝑧 < 𝑘. For 𝛾 ∈ (0, 1) we consider the counting random variable

𝑍𝛾,𝑧 := |{𝐴 ⊆ 𝑉 (𝐺) : |𝐴| = 𝑘, |𝐴 ∩ 𝒫𝒞| = 𝑧, |𝐸[𝐴]| ≥
(︂
𝑧

2

)︂
+ 𝛾𝑧

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
}|.

By Markov’s inequality, P [𝑍𝛾,𝑧 ≥ 1] ≤ E [𝑍𝛾,𝑧]. In particular, if for some 𝛾𝑧 > 0 it holds

𝑘∑︁

𝑧=⌊ 𝑘̄𝑘
𝑛
⌋

E [𝑍𝛾𝑧 ,𝑧] = 𝑜(1) (6.57)

we conclude using a union bound that for all 𝑧, 𝑍𝛾𝑧 ,𝑧 = 0 w.h.p. as 𝑛 → +∞ and in particular

for all 𝑧, 𝑑𝑘,𝑘(𝐺)(𝑧) ≤
(︀
𝑧
2

)︀
+ 𝛾𝑧

(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁
, w.h.p. as 𝑛 → +∞. Therefore it suffices to show
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that for

𝛾𝑧 := ℎ−1

(︃
log 2−

log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
)︃
,

(6.58) holds. Notice that 𝛾𝑧 is well-defined exactly because 𝑧 = 𝑘 = 𝑘 does not hold. We fix this

choice of 𝛾𝑧 from now on.

Let us fix 𝑧. We start with bounding the expectation for arbitrary 𝛾 > 0. By linearity of

expectation we have

E [𝑍𝛾𝑧 ,𝑧] =

(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
P
[︂
|E[𝐴]| ≥

(︂
𝑧

2

)︂
+ 𝛾𝑧

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂]︂
,where |𝐴| = 𝑘, |𝐴 ∩ 𝒫𝒞| = 𝑧

=

(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
P
[︂(︂
𝑧

2

)︂
+ Bin

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
≥
(︂
𝑧

2

)︂
+ 𝛾𝑧

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂]︂

=

(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
P
[︂
Bin

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
≥ 𝛾𝑧

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂]︂
(6.58)

Using the elementary inequalities

(︂
𝑘

𝑧

)︂
≤ 𝑘𝑘−𝑧 ≤ 𝑛𝑘−𝑧

and (︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
≤ 𝑛𝑘−𝑧,

we conclude
log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀ = 𝑂

(︂
log 𝑛

𝑘 + 𝑧

)︂
= 𝑜(1) (6.59)

by our assumption 𝜔(log 𝑛) = 𝑘.

By Lemma 6.8.3 and (6.60) we have,

1

2
+ Ω

⎛
⎝
⎯⎸⎸⎷ log

(︀(︀
𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀

⎞
⎠ ≤ 𝛾𝑧 ≤

1

2
+ 𝑜(1).

Therefore lim𝑛 𝛾𝑧 =
1
2

and the elementary
(︀
𝑛−𝑘
𝑘−𝑧

)︀
≥
(︀
(𝑛− 𝑘)/(𝑘 − 𝑧)

)︀𝑘−𝑧 since 𝑧 < 𝑘,

(︂
𝛾𝑧 −

1

2

)︂√︃(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂
= Ω

(︃√︃
log

(︂(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂)︃
= Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂
.
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Hence both assumption of Lemma 6.8.2 are satisfied (notice that the Binomial distribution of

interest is defined on population size
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
) and hence (6.59) implies

E [𝑍𝛾𝑧 ,𝑧] ≤
(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
𝑂

(︂
exp

(︂
−
(︂(︂

𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
𝑟(𝛾,

1

2
)− Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂)︂)︂

(6.60)

Now notice that for our choice of 𝛾𝑧,

𝑟(𝛾,
1

2
) = log 2− ℎ(𝛾) =

log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀ .

In particular using (6.61) we conclude that for any 𝑧

E [𝑍𝛾𝑧 ,𝑧] = exp

(︂
−Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂)︂
. (6.61)

Hence,

𝑘∑︁

𝑧=⌊ 𝑘̄𝑘
𝑛
⌋

E [𝑍𝛾𝑧 ,𝑧]

=
𝑘∑︁

𝑧=⌊ 𝑘̄𝑘
𝑛
⌋

exp

(︂
−Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂)︂

=
𝑘∑︁

𝑧=min{𝑘,𝑘−((log𝑛)2)}

exp

(︂
−Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂)︂

+

min{𝑘,𝑘−((log𝑛)2)}∑︁

𝑧=⌊ 𝑘̄𝑘
𝑛
⌋

exp

(︂
−Ω

(︂√︂(︀
𝑘 − 𝑧

)︀
log

𝑛

𝑘 − 𝑧

)︂)︂

≤ (log 𝑛)2 exp
(︁
−Ω

(︁√︀
log 𝑛

)︁)︁
+ 𝑘 exp

(︂
−Ω

(︂√︁
(log 𝑛)

3
2

)︂)︂

≤ exp
(︁
−Ω

(︁√︀
log 𝑛

)︁)︁
+ 𝑘 exp

(︂
−Ω

(︂√︁
(log 𝑛)

3
2

)︂)︂

= 𝑜 (1) ,

which is (6.58) as we wanted.
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6.4.2 Proof of second part of Proposition 6.2.3

Proof of second part of Proposition 6.2.3. The result follows from Theorem 6.2.10 by observing

that 𝑑𝑘,𝑘(𝐺)(0) corresponds to the number of edges of the 𝑘-densest subgraph of a vanilla 𝐺(𝑛−
𝑘, 1

2
) random graph.

6.5 Proofs for First Moment Curve Monotonicity results

6.5.1 Key lemmas

Lemma 6.5.1. Suppose 1 ≤ 𝑘 ≤ 𝑘 ≤ 𝑛 with 𝑛→ +∞, 𝑘 = 𝑜 (𝑛) and 𝜖 ∈ (0, 1) arbitrarily small

constant. For 𝑧 ∈ [0, (1− 𝜖) 𝑘] ∩ Z let

𝐴(𝑧) := log

(︂(︂
𝑘

𝑧

)︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂
. (6.62)

Then for any 𝑧 ∈ [0, (1− 𝜖) 𝑘] ∩ Z,

𝐴(𝑧) = Θ
(︁
𝑘 log

(︁𝑛
𝑘

)︁)︁
. (6.63)

and

𝐴(𝑧 + 1)− 𝐴(𝑧) = log

(︂
𝑘𝑘

(𝑧 + 1)𝑛

)︂
−𝑂 (1) . (6.64)

Proof. First

𝐴(𝑧) = log

(︂(︂
𝑘

𝑧

)︂)︂
+ log

(︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂
.

Since,
(︀
𝑘
𝑧

)︀
≤ 2𝑘 we have log

(︀(︀
𝑘
𝑧

)︀)︀
= 𝑂 (𝑘). Hence,

𝐴(𝑧) = log

(︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂
+𝑂 (𝑘) . (6.65)

For any 𝑧 ∈ [0, (1− 𝜖) 𝑘] since 𝑘 ≤ 𝑘 we have

𝜖𝑘 ≤ 𝑘 − 𝑧 ≤ 𝑘.

Hence, since for large 𝑛 we have 𝑘 < 𝑛
2
, by standard monotonicity arguments on the binomial
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coefficients we have

log

(︂(︂
𝑛− 𝑘

𝜖𝑘

)︂)︂
≤ log

(︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂
≤ log

(︂(︂
𝑛− 𝑘

𝑘

)︂)︂

which using Stirling’s approximation since 𝑘 ≤ 𝑘 = 𝑜 (𝑛) and 𝜖 is a positive constant yields

log

(︂(︂
𝑛− 𝑘

𝑘 − 𝑧

)︂)︂
= Θ

(︁
𝑘 log

(︁𝑛
𝑘

)︁)︁
.

Combining this with (6.66) and 𝑘 ≤ 𝑘 = 𝑜 (𝑛) we conclude (6.64).

For the final part, simple algebra and that 𝑘−𝑧
𝑘

= Ω(1), 𝑘−𝑧
𝑘

= Ω(1) for the 𝑧 of interest

yields,

𝐴 (𝑧 + 1)− 𝐴 (𝑧) = log

(︃
(𝑘 − 𝑧)

(︀
𝑘 − 𝑧

)︀

(𝑧 + 1)
(︀
𝑛− 𝑘 − 𝑘 + 𝑧 + 1

)︀
)︃

= log

(︂
𝑘𝑘

(𝑧 + 1)𝑛

)︂
+ log

(︂
𝑘 − 𝑧

𝑘

)︂
+ log

(︂
𝑘 − 𝑧

𝑘

)︂
+ log

(︂
𝑛

𝑛− 𝑘 − 𝑘 + 𝑧 + 1

)︂

= log

(︂
𝑘𝑘

(𝑧 + 1)𝑛

)︂
−𝑂 (1)−𝑂

(︂
𝑘

𝑛

)︂

= log

(︂
𝑘𝑘

(𝑧 + 1)𝑛

)︂
−𝑂 (1) ,

which is (6.65).

Lemma 6.5.2. Suppose 𝑘 ≤ 𝑘 ≤ 𝑛 with (log 𝑛)5 ≤ 𝑘. Then for any 𝑧 ∈ Z>0 for which it holds

⌊𝑘𝑘
𝑛
⌋ ≤ 𝑧 ≤ 𝑘 we have,

|Γ𝑘,𝑘(𝑧)− Φ𝑘(𝑧)| = 𝑂 (1) , (6.66)

for

Φ𝑘(𝑧) :=
1

2

(︂(︂
𝑘

2

)︂
+

(︂
𝑧

2

)︂)︂
+

1√
2

√︃
𝐴(𝑧)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
− 1

6
√
2

√︃
𝐴(𝑧)3(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀ . (6.67)

and 𝐴(𝑧) is defined in (6.63).
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Proof. Let

𝜖 :=
log
(︀(︀

𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀)︀
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀ .

Combining the elementary inequalities

(︂
𝑘

𝑧

)︂
=

(︂
𝑘

𝑘 − 𝑧

)︂
≤ 𝑘𝑘−𝑧 ≤ 𝑛𝑘−𝑧

and (︂
𝑛− 𝑘

𝑘 − 𝑧

)︂
≤ 𝑛𝑘−𝑧

with

𝑘 ≥ (log 𝑛)5 = 𝜔 (log 𝑛)

we conclude

𝜖 = 𝑂

(︃ (︀
𝑘 − 𝑧

)︀
log 𝑛(︀

𝑘 − 𝑧
)︀ (︀
𝑘 + 𝑧 − 1

)︀
)︃

= 𝑂

(︂
log 𝑛

𝑘

)︂
= 𝑜 (1) .

For our choice of 𝜖, Γ𝑘,𝑘 can be simply expressed as

Γ𝑘,𝑘(𝑧) =

(︂
𝑧

2

)︂
+ ℎ−1 (log 2− 𝜖)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂
.

Since 𝜖 = 𝑜 (1), Lemma 6.8.3 implies

|Γ𝑘,𝑘(𝑧)− Φ𝑘(𝑧)| = 𝑂

⎛
⎜⎝
⎯⎸⎸⎷

𝐴(𝑧)5
(︁(︀

𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁3

⎞
⎟⎠ , (6.68)

where Φ𝑘(𝑧) and 𝐴(𝑧) are defined in (6.68) and (6.63) respectively.

Using
(︀
𝑘
𝑧

)︀(︀
𝑛−𝑘
𝑘−𝑧

)︀
≤ 𝑛2(𝑘−𝑧) we have

𝐴(𝑧) ≤ 2
(︀
𝑘 − 𝑧

)︀
log 𝑛.

Furthermore
(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
≥ 𝑘(𝑘−𝑧)

2
. Hence, combining the last two inequalities, (6.69) can be
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simplified to

|Γ𝑘,𝑘(𝑧)− Φ𝑘(𝑧)| = 𝑂

⎛
⎝
√︃

(log 𝑛)5

𝑘

⎞
⎠ = 𝑂 (1) , (6.69)

where the last step is due to (log 𝑛)5 ≤ 𝑘. This concludes the proof of the Lemma.

Lemma 6.5.3. Suppose 𝑘 ≤ 𝑘 ≤ 𝑛 with (log 𝑛)5 ≤ 𝑘 and 𝜖 > 0. Then for some sufficiently large

constant 𝐶0 = 𝐶0(𝜖) > 0, if ⌊𝐶0
𝑘𝑘
𝑛
⌋ ≤ 𝑧 ≤ (1− 𝜖) 𝑘,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) = 𝑧

(︂
1

2
− 𝑜 (1)

)︂
−Θ

[︃√︃
𝑘

log(𝑛
𝑘
)
log

(︂
(𝑧 + 1)𝑛

𝑘𝑘

)︂]︃
+𝑂 (1) . (6.70)

Proof. First we choose 𝐶0 > 0 large enough so that so that log
(︁

(𝑧+1)𝑛

𝑘𝑘

)︁
dominates the constant

additional factor in the right hand side of (6.65) and therefore for all 𝑧 of interest

𝐴(𝑧 + 1)− 𝐴(𝑧) = Θ

(︂
log

(︂
𝑘𝑘

(𝑧 + 1)𝑛

)︂)︂
= −Θ

(︂
log

(︂
(𝑧 + 1)𝑛

𝑘𝑘

)︂)︂
. (6.71)

In light of Lemma 6.5.2 we can prove (6.71) with Φ𝑘(𝑧+1)−Φ𝑘(𝑧) (defined in (6.68)) instead

of Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) at the expense only of 𝑂 (1) terms on the right hand sides. We write the

difference Φ𝑘(𝑧 + 1)− Φ𝑘(𝑧) as a summation of three parts.

Φ𝑘(𝑧 + 1)− Φ𝑘(𝑧) =
1

2

(︂(︂
𝑘

2

)︂
+

(︂
𝑧 + 1

2

)︂)︂
− 1

2

(︂(︂
𝑘

2

)︂
+

(︂
𝑧

2

)︂)︂

⏟  ⏞  
First Part

+
1√
2

⎛
⎜⎜⎜⎝

√︃
𝐴(𝑧 + 1)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧 + 1

2

)︂)︂
−
√︃
𝐴(𝑧)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂

⏟  ⏞  
Second Part

⎞
⎟⎟⎟⎠

− 1

6
√
2

⎛
⎜⎜⎜⎜⎜⎝

⎯⎸⎸⎷ 𝐴(𝑧 + 1)3(︁(︀
𝑘
2

)︀
−
(︀
𝑧+1
2

)︀)︁ −
⎯⎸⎸⎷ 𝐴(𝑧)3(︁(︀

𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁

⏟  ⏞  
Third Part

⎞
⎟⎟⎟⎟⎟⎠
.
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The first part can be straightforwardly simplified to 𝑧
2
.

We write the second part as follows,

√︃
𝐴(𝑧 + 1)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧 + 1

2

)︂)︂
−
√︃
𝐴(𝑧)

(︂(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂)︂

=
(︁√︀

𝐴(𝑧 + 1)−
√︀
𝐴(𝑧)

)︁√︃(︂𝑘
2

)︂
−
(︂
𝑧 + 1

2

)︂
+
√︀
𝐴(𝑧)

(︃√︃(︂
𝑘

2

)︂
−
(︂
𝑧 + 1

2

)︂
−
√︃(︂

𝑘

2

)︂
−
(︂
𝑧

2

)︂)︃

=

(︃
𝐴(𝑧 + 1)− 𝐴(𝑧)√︀
𝐴(𝑧 + 1) +

√︀
𝐴(𝑧)

)︃√︃(︂
𝑘

2

)︂
−
(︂
𝑧 + 1

2

)︂
−
√︀
𝐴(𝑧)

(︀
𝑧+1
2

)︀
−
(︀
𝑧
2

)︀
√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀
+
√︁(︀

𝑘
2

)︀
−
(︀
𝑧
2

)︀

=

(︃
𝐴(𝑧 + 1)− 𝐴(𝑧)√︀
𝐴(𝑧 + 1) +

√︀
𝐴(𝑧)

)︃√︃(︂
𝑘

2

)︂
−
(︂
𝑧 + 1

2

)︂
−
√︀
𝐴(𝑧)

𝑧√︁(︀
𝑘
2

)︀
−
(︀
𝑧+1
2

)︀
+
√︁(︀

𝑘
2

)︀
−
(︀
𝑧
2

)︀ .

(6.72)

Since 𝑧 ≤ (1− 𝜖)𝑘 ≤ (1− 𝜖)𝑘 applying (6.64) from Lemma 6.5.1, the last quantity is of the order

Θ

⎡
⎣
⎛
⎝𝐴(𝑧 + 1)− 𝐴(𝑧)√︁

𝑘 log(𝑛
𝑘
)

⎞
⎠ 𝑘

⎤
⎦−Θ

[︂√︂
𝑘 log(

𝑛

𝑘
)
𝑧

𝑘

]︂
, using

(︂
𝑘

2

)︂
−
(︂
𝑧

2

)︂
= Θ

(︁(︀
𝑘
)︀2)︁

=Θ

⎡
⎣
⎛
⎝(𝐴(𝑧 + 1)− 𝐴(𝑧))

√
𝑘√︁

log(𝑛
𝑘
)

⎞
⎠
⎤
⎦−Θ

⎡
⎣

√︁
log(𝑛

𝑘
)𝑧

√
𝑘

⎤
⎦

=−Θ

[︃√︃
𝑘

log(𝑛
𝑘
)
log

(︂
(𝑧 + 1)𝑛

𝑘𝑘

)︂]︃
− 𝑜 (𝑧) . (6.73)

where for the last equality we used (6.72) and 𝑘 = 𝜔 (log 𝑛).

For the third part we write,

⎯⎸⎸⎷ 𝐴(𝑧 + 1)3(︁(︀
𝑘
2

)︀
−
(︀
𝑧+1
2

)︀)︁ −
√︃

𝐴(𝑧)3(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀

=
𝐴(𝑧 + 1)

3
2 − 𝐴(𝑧)

3
2√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀ + 𝐴(𝑧)
3
2

⎛
⎝ 1√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀ −
1√︁(︀

𝑘
2

)︀
−
(︀
𝑧
2

)︀

⎞
⎠

Using 𝑎
3
2 − 𝑏 3

2 = (𝑎3 − 𝑏3) /
(︁
𝑎

3
2 + 𝑏

3
2

)︁
and 𝑎3− 𝑏3 = (𝑎− 𝑏) (𝑎2 + 𝑏2 + 𝑎𝑏) = 𝑂 ((𝑎− 𝑏) (𝑎2 + 𝑏2))

263



for 𝑎, 𝑏 ∈ R, we have that the quantity is at most

𝑂

⎡
⎣(𝐴(𝑧 + 1)− 𝐴(𝑧)) (𝐴(𝑧 + 1)2 + 𝐴(𝑧)2)

(𝐴(𝑧 + 1)
3
2 + 𝐴(𝑧)

3
2 )
√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀

⎤
⎦+𝑂

⎡
⎢⎢⎣𝐴(𝑧)

3
2

⎛
⎜⎜⎝

√︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
−
√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀
√︂(︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀)︁(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁

⎞
⎟⎟⎠

⎤
⎥⎥⎦

which by Lemma 6.5.1 and (6.72) is at most

𝑂

⎡
⎢⎣
log
(︁

(𝑧+1)𝑛

𝑘𝑘

)︁√︁
𝑘 log

(︀
𝑛
𝑘

)︀
√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀

⎤
⎥⎦+𝑂

⎡
⎢⎢⎣
(︁
𝑘 log

(︁𝑛
𝑘

)︁)︁ 3
2

⎛
⎜⎜⎝

√︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀
−
√︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀
√︂(︁(︀

𝑘
2

)︀
−
(︀
𝑧+1
2

)︀)︁(︁(︀
𝑘
2

)︀
−
(︀
𝑧
2

)︀)︁

⎞
⎟⎟⎠

⎤
⎥⎥⎦

=𝑂

⎡
⎣
(︀
log
(︀
𝑛
𝑘

)︀)︀ 3
2

√
𝑘

⎤
⎦+𝑂

⎡
⎣
(︀(︀

𝑧+1
2

)︀
−
(︀
𝑧
2

)︀)︀ (︀
log
(︀
𝑛
𝑘

)︀)︀ 3
2

(︀
𝑘
)︀ 3

2

⎤
⎦ ,

where for the last equality we used the elementary
√
𝑎 −

√
𝑏 = (𝑎− 𝑏) /

(︁√
𝑎+

√
𝑏
)︁

and that

𝑧 ≤ (1− 𝜖)𝑘. Finally, the last displayed quantity is at most

𝑂

⎡
⎣
(︀
log
(︀
𝑛
𝑘

)︀)︀ 3
2

√
𝑘

⎤
⎦+𝑂

⎡
⎣𝑧
(︀
log
(︀
𝑛
𝑘

)︀)︀ 3
2

(︀
𝑘
)︀ 3

2

⎤
⎦

=𝑂

⎡
⎣
(︀
log
(︀
𝑛
𝑘

)︀)︀ 3
2

√
𝑘

⎤
⎦ , using 𝑧 ≤ 𝑘

=𝑜 (1) ,

since 𝑘 = 𝜔
(︀
log3 𝑛

)︀
by our assumptions.

Combining the three parts gives

Φ𝑘(𝑧 + 1)− Φ𝑘(𝑧) = 𝑧

(︂
1

2
− 𝑜(1)

)︂
−Θ

[︃√︃
𝑘

log(𝑛
𝑘
)
log

(︂
(𝑧 + 1)𝑛

𝑘𝑘

)︂]︃
+ 𝑜 (1) . (6.74)

which based on Lemma 6.5.2 implies (6.71).

The proof of the Lemma is complete.
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Lemma 6.5.4. Suppose 𝑘 ≤ 𝑘 ≤ 𝑛 with (log 𝑛)5 ≤ 𝑘 and 𝜖 > 0. Let

𝑇𝑛 :=

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ log
(︃√︃

𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
)︃
. (6.75)

For some sufficiently large constant 𝐶0 = 𝐶0(𝜖) > 0 and sufficiently large enough values of 𝑛 the

following monotonicity properties hold in the discretized interval

ℐ = ℐ𝐶0 = [⌊𝐶0
𝑘𝑘

𝑛
⌋, (1− 𝜖)𝑘] ∩ Z.

(1) If 𝑇𝑛 = 𝑜
(︁

𝑘𝑘
𝑛

)︁
then Γ𝑘,𝑘 is monotonically increasing on ℐ.

(2) If 𝑇𝑛 = 𝜔 (𝑘) then Γ𝑘,𝑘 is monotonically decreasing on ℐ.

(3) If 𝜔
(︁

𝑘𝑘
𝑛

)︁
= 𝑇𝑛 = 𝑜 (𝑘) then Γ𝑘,𝑘 is non-monotonous on ℐ with the property that for some

constants 0 < 𝐷1 < 𝐷2, 𝑢1 := 𝐷1⌈
√︂

𝑘

log(𝑛
𝑘̄ )
⌉ and 𝑢2 := 𝐷2⌈

√︂
𝑘

log(𝑛
𝑘̄ )
⌉ the following are true.

(a) ⌊𝐶0
𝑘𝑘
𝑛
⌋ < 𝑢1 < 𝑢2 < (1− 𝜖)𝑘 and

(b)

max
𝑧∈ℐ∩[𝑢1,𝑢2]

Γ𝑘,𝑘(𝑧) + Ω

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

≤ Γ𝑘,𝑘(⌊𝐶
𝑘𝑘

𝑛
⌋) ≤ Γ𝑘,𝑘 ((1− 𝜖)𝑘) . (6.76)

Proof. We start with the case 𝑇𝑛 = 𝑜
(︁

𝑘𝑘
𝑛

)︁
which can be equivalently written as

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1

log

(︃√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
)︃

= 𝑜 (1)

or using part (a) of Lemma 6.8.4,

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1

= 𝑜 (1) . (6.77)

Using (6.71) from Lemma 6.5.3 we have that for some universal constant 𝐶1 > 0 and large
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enough 𝑛,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≥
𝑧

4
− 𝐶1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ log
(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂
−𝑂 (1)

=
𝑘𝑘

4𝑛
log

(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂⎛
⎝

𝑛𝑧
𝑘𝑘

log
(︁

𝑛(𝑧+1)

𝑘𝑘

)︁ − 4𝐶1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
⎞
⎠−𝑂 (1) .

The second term in the parenthesis in the last displayed quantity is 𝑜 (1) from (6.78). Now notice

that since 𝑘 = 𝜔 (log 𝑛), from (6.78) we have

𝑘𝑘

𝑛
= 𝜔 (1) . (6.78)

Therefore choosing 𝐶0 > 0 large enough we have that 𝑧 ≥ ⌊𝐶0
𝑘𝑘
𝑛
⌋ implies that the first term

in the parenthesis can be made to be at least 1. Finally, the multiplicative term outside the

parenthesis satisfies
𝑘𝑘

4𝑛
log

(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂
≥ 𝑘𝑘

4𝑛
log 𝑒4 =

𝑘𝑘

𝑛

by choosing 𝑧 + 1 ≥ ⌊𝐶0𝑘𝑘
𝑛

⌋ for say 𝐶0 > 𝑒4. Hence, indeed for some sufficiently large 𝐶0 > 0 if

𝑧 ∈ ℐ𝐶0 ,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≥
𝑘𝑘

𝑛
(1− 𝑜 (1))−𝑂 (1)

which according to (6.79) implies that for some sufficiently large 𝐶0 > 0 for 𝑛 large enough if

𝑧 ∈ ℐ𝐶0 ,

Γ𝑘,𝑘(𝑧 + 1) ≥ Γ𝑘,𝑘(𝑧),

that is the curve is increasing.

We now turn to Part (2) where 𝑇𝑛 = 𝜔 (𝑘) which can be equivalently written as

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1

log

(︃√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
)︃

= 𝜔
(︁𝑛
𝑘

)︁
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or using that 𝑘 = 𝑜 (𝑛) and part (c) of Lemma 6.8.4,

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1

= 𝜔

(︃
𝑛
𝑘

log
(︀
𝑛
𝑘

)︀
)︃
. (6.79)

which simplifies to √︂
𝑘 log

(︁𝑛
𝑘

)︁
= 𝜔 (𝑘) . (6.80)

Now using (6.71) from Lemma 6.5.3 we have that for some universal constants 𝑈1 > 0 and

large enough 𝑛,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≤
3 (𝑧 + 1)

4
− 𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ log
(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂
+𝑂 (1)

=
3𝑘𝑘

4𝑛
log

(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂⎛
⎝

𝑛(𝑧+1)

𝑘𝑘

log
(︁

𝑛(𝑧+1)

𝑘𝑘

)︁ − 4

3
𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
⎞
⎠+𝑂 (1) .

(6.81)

Recall that for 𝑥 > 𝑒, 𝑥/ log 𝑥 is increasing from elementary reasoning. Therefore if 𝐶0 > 𝑒 using

𝑛 (𝑧 + 1)

𝑘𝑘
≥ 𝑒 (6.82)

and the trivial 𝑛(𝑧+1)

𝑘𝑘
≤ 𝑛

𝑘
, we have

𝑛(𝑧+1)

𝑘𝑘

log
(︁

𝑛(𝑧+1)

𝑘𝑘

)︁ ≤
𝑛
𝑘

log
(︀
𝑛
𝑘

)︀ .

Hence, by (6.80) we conclude

𝑛(𝑧+1)

𝑘𝑘

log
(︁

𝑛(𝑧+1)

𝑘𝑘

)︁ = 𝑜

(︃√︃
𝑘

log
(︀
𝑛
𝑘

)︀
(︂
𝑘𝑘

𝑛

)︂−1
)︃
.

Therefore indeed the term inside the parenthesis in (6.82) is at most −𝑈1

√︂
𝑘

log(𝑛
𝑘̄ )

(︁
𝑘𝑘
𝑛

)︁−1

for
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large enough 𝑛, which allows to conclude that for large enough 𝑛 (6.82) implies for all 𝑧 ∈ ℐ𝐶 ,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≤ −3

4
𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ log
(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂
+𝑂 (1)

≤ −3

4
𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ +𝑂 (1) (6.83)

where we have used log
(︁

𝑛(𝑧+1)

𝑘𝑘

)︁
≥ 1 according to (6.83). Using now that 𝑘 = 𝜔 (log 𝑛) we

conclude based on (6.84), that indeed for some sufficiently large 𝐶0 > 0 and large enough 𝑛, if

𝑧 ∈ ℐ𝐶0 , Γ𝑘,𝑘(𝑧 + 1) ≤ Γ𝑘,𝑘(𝑧), that is the curve is decreasing.

We finally turn to Part (3) where 𝜔
(︁

𝑘𝑘
𝑛

)︁
= 𝑇𝑛 = 𝑜 (𝑘) . By similar arguments as for (6.78)

and (6.81) we conclude that in this case

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔

(︂
𝑘𝑘

𝑛

)︂
(6.84)

and √︂
𝑘 log

(︁𝑛
𝑘

)︁
= 𝑜 (𝑘) . (6.85)

Notice that because of (6.85) and (6.86) we have that for any choice of 𝐷1, 𝐷2 > 0 and

sufficiently large 𝑛,

⌊𝐶0
𝑘𝑘

𝑛
⌋ < 𝑢1 = 𝐷1⌈

√︃
𝑘

log
(︀
𝑛
𝑘

)︀⌉ < 𝑢2 = 𝐷2⌈
√︃

𝑘

log
(︀
𝑛
𝑘

)︀⌉ < (1− 𝜖)𝑘.

It suffices now to establish (6.77) as non-monotonicity is directly implied by it.

By definition of Γ𝑘,𝑘 to establish for large 𝑛

Γ𝑘,𝑘 ((1− 𝜖)𝑘) ≥ Γ𝑘,𝑘(⌊𝐶0
𝑘𝑘

𝑛
⌋) (6.86)

it suffices to establish that for large 𝑛,

(︂
𝑘

2

)︂
+ ℎ−1

⎛
⎝log 2−

log
(︁(︀

𝑘
(1−𝜖)𝑘

)︀(︀
𝑛−𝑘

𝑘−(1−𝜖)𝑘

)︀)︁

(︀
𝑘
2

)︀
−
(︀
(1−𝜖)𝑘

2

)︀

⎞
⎠
(︂(︂

𝑘

2

)︂
−
(︂
(1− 𝜖)𝑘

2

)︂)︂
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is bigger than

(︂⌊𝐶0
𝑘𝑘
𝑛
⌋

2

)︂
+ ℎ−1

⎛
⎝log 2−

log
(︀

𝑘
𝑘−⌊𝐶0

𝑘̄𝑘
𝑛
⌋
)︀(︀

𝑛−𝑘
𝑘

)︀

(︀
𝑘
2

)︀
−
(︀⌊𝐶 𝑘̄𝑘

𝑛
⌋

2

)︀

⎞
⎠
(︃(︂

𝑘

2

)︂
−
(︂⌊𝐶 𝑘𝑘

𝑛
⌋

2

)︂)︃
.

Since 𝑘 = 𝜔 (log 𝑛) both the arguments of ℎ−1 in the displayed equations are log 2− 𝑜 (1). Hence

by Lemma 6.8.3 it suffices for large 𝑛 to prove

1

2

(︂(︂
𝑘

2

)︂
+

(︂
(1− 𝜖)𝑘

2

)︂)︂
+Θ

(︃√︃
log

(︂(︂
𝑘

(1− 𝜖) 𝑘

)︂(︂
𝑛− 𝑘

𝑘 − (1− 𝜖)𝑘

)︂)︂(︂(︂
𝑘

2

)︂
−
(︂
(1− 𝜖)𝑘

2

)︂)︂)︃

is bigger than

1

2

(︃(︂
𝑘

2

)︂
+

(︂⌊𝐶0
𝑘𝑘
𝑛
⌋

2

)︂)︃
+Θ

⎛
⎝
⎯⎸⎸⎷log

[︂(︂
𝑘

⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂(︂
𝑛− 𝑘

𝑘 − ⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂]︂(︃(︂
𝑘

2

)︂
−
(︂⌊𝐶0

𝑘𝑘
𝑛
⌋

2

)︂)︃⎞
⎠ .

Since by (6.85) and (6.86) we have 𝑘 = 𝜔
(︁

𝑘𝑘
𝑛

)︁
it suffices that 𝑘2 is

𝜔

(︃√︃
log

[︂(︂
𝑘

⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂(︂
𝑛− 𝑘

𝑘 − ⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂]︂(︂
𝑘

2

)︂
−
√︃

log

[︂(︂
𝑘

(1− 𝜖) 𝑘

)︂(︂
𝑛− 𝑘

𝑘 − (1− 𝜖) 𝑘

)︂]︂(︂(︂
𝑘

2

)︂
−
(︂
𝑘

2

)︂)︂)︃
.

Using that (1− 𝜖) 𝑘 ≤ 𝑘 and that for large 𝑛, 𝑘 ≤ 𝑛
2

by standard monotonicity arguments we

have (︂
𝑘

(1− 𝜖) 𝑘

)︂(︂
𝑛− 𝑘

𝑘 − (1− 𝜖) 𝑘

)︂
≥
(︂
𝑛− 𝑘

𝑘 − 𝑘

)︂
.

Hence it suffices to show

𝑘2 = 𝜔

(︃√︃
log

[︂(︂
𝑘

⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂(︂
𝑛− 𝑘

𝑘 − ⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂]︂(︂
𝑘

2

)︂
−
√︃

log

[︂(︂
𝑛− 𝑘

𝑘 − 𝑘

)︂]︂(︂(︂
𝑘

2

)︂
−
(︂
𝑘

2

)︂)︂)︃
.

Now since for large 𝑛, 𝑘 < 𝑛−𝑘
2

, using the elementary

(︂
𝑘

⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂(︂
𝑛− 𝑘

𝑘 − ⌊𝐶0
𝑘𝑘
𝑛
⌋

)︂
≤ 2𝑘

(︂
𝑛− 𝑘

𝑘

)︂
≤ 𝑒𝑂(𝑘 log(𝑛−𝑘

𝑘̄
))
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and (︂
𝑛− 𝑘

𝑘 − 𝑘

)︂
≥
(︃(︀

𝑛− 𝑘
)︀

𝑘

)︃𝑘−𝑘

we conclude that it suffices to have

𝑘2 = 𝜔

(︂(︁(︀
𝑘
)︀ 3

2 −
√︀
𝑘
(︀
𝑘 − 𝑘

)︀)︁
log

(︂
𝑛− 𝑘

𝑘

)︂)︂
= 𝜔

(︂√︀
𝑘𝑘 log

(︂
𝑛− 𝑘

𝑘

)︂)︂
,

which follows directly from (6.86). This establishes (6.87) for large enough 𝑛.

Now using (6.71) from Lemma 6.5.3 to conclude that for some universal constants 𝑈1 > 0,

large enough 𝑛 and such 𝑧,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≤ 𝑧 − 𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ log
(︂
𝑛 (𝑧 + 1)

𝑘𝑘

)︂
+𝑂 (1) . (6.87)

Using 𝑧 + 1 ≥ ⌊𝐶0
𝑘𝑘
𝑛
⌋ for 𝐶0 > 𝑒 and focusing only on ⌊𝐶0

𝑘𝑘
𝑛
⌋ ≤ 𝑧 ≤ 𝑈1

2

√︂
𝑘

log(𝑛
𝑘̄ )

(existence of

such 𝑧 follows by (6.85) ) we conclude for any such 𝑧 and large enough 𝑛,

Γ𝑘,𝑘(𝑧 + 1)− Γ𝑘,𝑘(𝑧) ≤ 𝑧 − 𝑈1

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ +𝑂 (1) ≤ −𝑈1

2

√︃
𝑘

log
(︀
𝑛
𝑘

)︀ (6.88)

where we used the fact that 𝑘 = 𝜔 (log 𝑛). Now set

𝐷1 :=
𝑈1

4
, 𝐷2 :=

𝑈1

2
.

Fix any 𝑍 ∈ ℐ with 𝐷1

√︂
𝑘

log(𝑛
𝑘̄ )

≤ 𝑍 ≤ 𝐷2⌈
√︂

𝑘

log(𝑛
𝑘̄ )
⌉. Focus on 𝑧 ∈ ℐ with ⌊𝐶0

𝑘𝑘
𝑛
⌋ ≤ 𝑧 ≤ 𝑍 − 1.

(6.85) yields that the the number of such 𝑧’s for large 𝑛 is at least 𝐷1

2

√︂
𝑘

log(𝑛
𝑘̄ )

. By telescopic

summation of (6.89) over these 𝑧 we have

Γ𝑘,𝑘 (𝑍) +𝐷2
1

𝑘

log
(︀
𝑛
𝑘

)︀ ≤ Γ𝑘,𝑘(⌊𝐶0
𝑘𝑘

𝑛
⌋). (6.89)

Since 𝑍 was arbitrary we conclude that,
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max

𝑧∈ℐ∩

⎡⎣𝐷1⌈
√︃

𝑘̄

log(𝑛
𝑘̄ )

⌉,𝐷2⌈
√︃

𝑘̄

log(𝑛
𝑘̄ )

⌉

⎤⎦
Γ𝑘,𝑘(𝑧) + Ω

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

≤ Γ𝑘,𝑘(⌊𝐶0
𝑘𝑘

𝑛
⌋). (6.90)

Equations (6.91) and (6.87) imply (6.77). The proof of the Lemma is complete.

6.5.2 Proof of Theorem 6.2.5

Proof of Theorem 6.2.5. We start with the case where 𝑘 = 𝑜 (
√
𝑛) . Notice that 𝑘 = 𝑜 (

√
𝑛)

together with 𝑘 = 𝑜 (𝑛) trivially imply

𝑛
𝑘

log 𝑛
𝑘

= 𝜔

(︂
𝑘2

𝑛

)︂

which can be written equivalently as

𝑛

𝑘2
= 𝜔

(︂
𝑘

𝑛
log
(︁𝑛
𝑘

)︁)︂

or √︃
𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔

(︂
𝑘𝑘

𝑛

)︂

or (︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔 (1) .

Using part (b) of Lemma 6.8.4 we have

(︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀ log
(︃(︂

𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀
)︃

= 𝜔 (1)

or

𝑇𝑛 = 𝜔

(︂
𝑘𝑘

𝑛

)︂
, (6.91)

where 𝑇𝑛 is defined in equation (6.76).
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First, we consider the subcase where 𝑘 = 𝑜

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
. In that case, we have

𝑛

𝑘
= 𝜔

(︁ 𝑛
𝑘2

log
(︁ 𝑛
𝑘2

)︁)︁

which since 𝑘2 = 𝑜 (𝑛) which according to part (d) of Lemma 6.8.4 implies

𝑛
𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔
(︁ 𝑛
𝑘2

)︁
(6.92)

which is equivalent with

𝑘 = 𝜔

(︂√︂
𝑘 log

(︁𝑛
𝑘

)︁)︂

or
𝑛
𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔

(︃(︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀
)︃

or
𝑛

𝑘
= 𝜔

(︃(︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀ log
(︃(︂

𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀
)︃)︃

.

The last equality can be rewritten

𝑛

𝑘
= 𝜔

(︃(︂
𝑘𝑘

𝑛

)︂−1

𝑇𝑛

)︃
,

where 𝑇𝑛 is defined in equation (6.76), which now simplifies to

𝑇𝑛 = 𝑜 (𝑘) . (6.93)

Combining (6.92) with (6.94), according to Part (3) of Lemma 6.5.4 we conclude the desired

non-monotonicity result in that subcase.

Second, we consider the subcase 𝑘 = 𝜔

(︂
𝑘2

log( 𝑛
𝑘2
)

)︂
. In tha case, following similar to the

derivation of (6.94) by simply the order of comparison (in more detail, reversing the 𝑜-notation

with the 𝜔-notation and applying the other direction of part (d) of Lemma 6.8.4), we conclude

that in this case 𝑇𝑛 = 𝜔 (𝑘). In particular, according to Part (2) of Lemma 6.5.4 we can conclude

that the curve is decreasing in that subcase.
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We turn now to the case 𝑘 = 𝜔 (
√
𝑛). In that case, together with 𝑘 = 𝑜 (𝑛) we have

𝑛
𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔
(︁ 𝑛
𝑘2

)︁

which is exactly (6.93). Following the identical derivation following (6.93) we conclude that

(6.94) holds in this case.

First, we consider the subcase 𝑘 = 𝑜

(︂
𝑛2

𝑘2

log( 𝑛
𝑘2
)

)︂
which can be written equivalently as

𝑛

𝑘
= 𝜔

(︂
𝑘2

𝑛
log

(︂
𝑘2

𝑛

)︂)︂
.

Since 𝑘2 = 𝜔 (𝑛) according to part (d) of Lemma 6.8.4 we have

𝑘2

𝑛
= 𝑜

(︃
𝑛
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

or
𝑘𝑘

𝑛
= 𝑜

(︃√︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃

or (︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀ = 𝜔 (1)

which according to part (b) of Lemma 6.8.4 gives

(︂
𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀ log
(︃(︂

𝑘𝑘

𝑛

)︂−1
√︃

𝑘

log
(︀
𝑛
𝑘

)︀
)︃

= 𝜔 (1) .

The last equality simplifies to (6.92). In particular, in this regime both (6.92) and (6.94) are

hence according to Part (3) of Lemma 6.5.4 we can conclude the desired non-monotonicity result

in this subcase.

Second, we consider the subcase 𝑘 = 𝜔

(︂
𝑛2

𝑘2

log( 𝑛
𝑘2
)

)︂
. Following similar reasoning to the deriva-

tion of (6.92) under the assumption 𝑘 = 𝑜

(︂
𝑛2

𝑘2

log( 𝑛
𝑘2
)

)︂
one can establish 𝑇𝑛 = 𝑜

(︁
𝑘𝑘
𝑛

)︁
from

𝑘 = 𝜔

(︂
𝑛2

𝑘2

log( 𝑛
𝑘2
)

)︂
imply (in more detail, we need to reverse the 𝑜-notation with the 𝜔-notation at

all places and apply the other direction of part (b) of Lemma 6.8.4)). Hence, using Part (1) of

273



Lemma 6.5.4 allows us to conclude that the curve is increasing in this subcase.

This completes the proof of Theorem 6.2.5.

6.6 Proof of the Presence of the Overlap Gap Property

Proof of Theorem 6.2.9. First, we apply Theorem 6.2.5 for 𝜖 = 1
2

and we denote by 𝐶0 = 𝐶0

(︀
1
2

)︀
>

0 the constant implied by Theorem 6.2.5. Notice that since under our assumptions both 𝑘, 𝑘 are

𝑜 (
√
𝑛), 𝑘𝑘 = 𝑜 (𝑛), and therefore for large 𝑛, ⌊𝐶0

𝑘𝑘
𝑛
⌋ = 0. In particular, the interval containg

the overlap sizes of interest simplifies to

ℐ =

[︂
0,
𝑘

2

]︂
∩ Z.

Furthermore according to our parameter assumptions on 𝑘, 𝑘, 𝑛 we are in the case (1i) of Theorem

6.2.5 where Γ𝑘,𝑘(𝑧), 𝑧 ∈ ℐ is non-monotonic and satisfies (6.10). Specifically, let 𝐷1, 𝐷2, 𝑢1, 𝑢2 as

in Theorem 6.2.5 so that for large enough 𝑛,

⌊𝐶0
𝑘𝑘

𝑛
⌋ = 0 < 𝑢1 < 𝑢2 <

𝑘

2
(6.94)

and (6.10) holds.

We first establish (6.11) for 𝐷1, 𝐷2, 𝑢1, 𝑢2 as chosen above. By Proposition 6.2.3 we know

that for all 𝑧 ∈ ℐ, 𝑑𝑘,𝑘(𝐺)(𝑧) ≤ Γ𝑘,𝑘(𝑧), w.h.p. as 𝑛 → +∞. Combining with (6.10) we have

that for some constant 𝑐0 > 0:

Γ𝑘,𝑘(0) ≥ max
𝑧∈ℐ∩[𝑢1,𝑢2]

𝑑𝑘,𝑘(𝐺)(𝑧) + 𝑐0
𝑘

log
(︀
𝑛
𝑘

)︀ , (6.95)

w.h.p. as 𝑛→ +∞. Hence, to establish (6.11) from (6.96) it suffices to establish that

min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(
𝑘

2
)} ≥ Γ𝑘,𝑘(0)− 𝑜

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃
, (6.96)
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w.h.p. as 𝑛→ +∞. Indeed, combining (6.97) with (6.96) implies

min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(
𝑘

2
)} ≥ max

𝑧∈ℐ∩[𝑢1,𝑢2]
𝑑𝑘,𝑘(𝐺)(𝑧) +

𝑐0
2

𝑘

log
(︀
𝑛
𝑘

)︀ , (6.97)

w.h.p. as 𝑛→ +∞ which implies (6.11).

We first prove

𝑑𝑘,𝑘(𝐺)(0) ≥ Γ𝑘,𝑘(0)− 𝑜

(︃
𝑘

log
(︀
𝑛
𝑘

)︀
)︃
, (6.98)

w.h.p. as 𝑛→ +∞. Notice that the exponent 𝐶 = log 𝑘/ log 𝑛 satisfies

𝐶 <
1

2
−

√
6

6
= 1− 1

6− 2
√
6

and as it can straightforwardly checked it also satisfies 3
2
−
(︀
5
2
−
√
6
)︀

1−𝐶
𝐶

< 1. Therefore some

𝛽(𝐶) > 0 satisfies
3

2
−
(︂
5

2
−

√
6

)︂
1− 𝐶

𝐶
< 𝛽(𝐶) < 1.

Part (2) of Theorem 6.2.3 gives for this value of 𝛽 = 𝛽(𝐶)

𝑑𝑘,𝑘(𝐺)(0) ≥ Γ𝑘,𝑘(0)−𝑂
(︁(︀
𝑘
)︀𝛽√︀

log 𝑛
)︁

(6.99)

w.h.p. as 𝑛 → +∞. Since 𝛽 < 1, we have
(︀
𝑘
)︀𝛽 √

log 𝑛 = 𝑜
(︁

𝑘
log(𝑛/𝑘)

)︁
. Hence, using (6.100), we

can directly conclude (6.99).

We now proceed with proving

𝑑𝑘,𝑘(𝐺)

(︂
𝑘

2

)︂
≥ Γ𝑘,𝑘(0), (6.100)

w.h.p. as 𝑛 → +∞. Note that (6.101) combined with (6.99) imply (6.97). First, denote by

𝐺0 := 𝐺 ∖ 𝒫𝒞 the graph obtained by deleting from 𝐺 the vertices of 𝒫𝒞 and notice that 𝐺0

is simply distributed as an Erdős-Rényi model 𝐺0 ∼ 𝐺
(︀
𝑛− 𝑘, 1

2

)︀
. Second, we fix an arbitrary

𝑘
2
-vertex subgraph 𝑆1 of 𝒫𝒞 and then optimize over the 𝑁 :=

(︀
𝑛−𝑘
𝑘− 𝑘

2

)︀
different (𝑘 − 𝑘

2
)-vertex
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subgraphs 𝑆2 of 𝐺0 to get

𝑑𝑘,𝑘(𝐺)

(︂
𝑘

2

)︂
≥ max

𝑆2

|E (𝑆1 ∪ 𝑆2) | =
(︂

𝑘
2

2

)︂
+max

𝑆2

{|E(𝑆1, 𝑆2)|+ |E(𝑆2)|}, (6.101)

where we used the fact that 𝑆1 is a subset of the planted clique and by E(𝑆1, 𝑆2) we denote to

the set of edges with one endpoint in 𝑆1 and one endpoint in 𝑆2. We now index the subsets 𝑆2 by

𝑆𝑖, 𝑖 = 1, 2, . . . , 𝑁 and set 𝑋𝑖 = |E(𝑆1, 𝑆
𝑖)| and 𝑌𝑖 = |E(𝑆𝑖)|. It is straightforward to see because

of the distribution of 𝐺0 that

(1) for each 𝑖 ∈ [𝑁 ], 𝑋𝑖 ∼ Bin
(︁(︀

𝑘−𝑘/2
2

)︀
, 1
2

)︁

(2) 𝑌𝑖, 𝑖 ∈ [𝑁 ] are i.i.d. Bin
(︀
(𝑘 − 𝑘

2
)𝑘
2
, 1
2

)︀

(2) the sequence 𝑋𝑖, 𝑖 ∈ [𝑁 ] is independent from the sequence 𝑌𝑗, 𝑗 ∈ [𝑁 ] and

(4) max𝑖∈[𝑁 ]{𝑋𝑖} = 𝑑ER,𝑘− 𝑘
2
(𝐺0), where 𝑑ER,𝐾(·) is defined for any 𝐾 ∈ [|𝑉 (𝐺0)|] in (6.12).

Hence, combining (6.102) and the above four observations with Lemma 6.8.1 we have

𝑑𝑘,𝑘(𝐺)

(︂
𝑘

2

)︂
≥
(︂

𝑘
2

2

)︂
+ max

𝑖=1,2,...,𝑁
{𝑋𝑖}+max{(𝑘 −

𝑘
2
)𝑘
2

2
−
√︂

(𝑘 − 𝑘

2
)
𝑘

2
log log𝑁, 0}

≥
(︂

𝑘
2

2

)︂
+ 𝑑ER,𝑘− 𝑘

2
(𝐺0) + max{(𝑘 −

𝑘
2
)𝑘
2

2
−
√︁
𝑘𝑘 log log𝑁, 0}

=

(︂
𝑘
2

2

)︂
+ 𝑑ER,𝑘− 𝑘

2
(𝐺0) + max{(𝑘 −

𝑘
2
)𝑘
2

2
−𝑂

(︂√︁
𝑘𝑘 log 𝑛

)︂
, 0}, (6.102)

where for the last equality we have used that 𝑁 =
(︀
𝑛−𝑘
𝑘−𝑘

)︀
≤ 2𝑛−𝑘 ≤ 2𝑛 and therefore log log𝑁 =

𝑂 (log 𝑛) .

Since by our assumption 𝑘 = Θ
(︀
𝑛𝐶
)︀

for 𝐶 < 1
2

and 𝑘 ≤ 𝑘 we have 𝑘
2
≤ 𝑘 − 𝑘

2
≤ 𝑘 and

therefore 𝑘 − 𝑘
2
= Θ

(︀
𝑛𝐶
)︀
. Hence Theorem 6.2.10 can be applied, according to which for any

𝛽 > 0 with 3
2
−
(︀
5
2
−

√
6
)︀

1−𝐶
𝐶

< 𝛽 < 1 it holds,

𝑑ER,𝑘− 𝑘
2
(𝐺0) ≥ ℎ−1

⎛
⎝log 2−

log
(︀
𝑛−𝑘
𝑘− 𝑘

2

)︀

(︀
𝑘− 𝑘

2
2

)︀

⎞
⎠
(︂
𝑘 − 𝑘

2

2

)︂
−𝑂

(︁(︀
𝑘
)︀𝛽√︀

log 𝑛
)︁
.
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Hence, using (6.103),

𝑑𝑘,𝑘(𝐺)

(︂
𝑘

2

)︂
≥
(︂

𝑘
2

2

)︂
+ℎ−1

⎛
⎝log 2−

log
(︀
𝑛−𝑘
𝑘− 𝑘

2

)︀

(︀
𝑘− 𝑘

2
2

)︀

⎞
⎠
(︂
𝑘 − 𝑘

2

2

)︂
+

(︀
𝑘 − 𝑘

2

)︀
𝑘

2
−𝑂

(︂√︁
𝑘𝑘 log 𝑛+

(︀
𝑘
)︀𝛽√︀

log 𝑛

)︂
,

(6.103)

w.h.p. as 𝑛→ +∞.

Using Lemma 6.8.3 for Taylor expanding ℎ−1 the lower bound of (6.104) simplifies and yield

that 𝑑𝑘,𝑘(𝐺)
(︀
𝑘
2

)︀
is at least

1

2

(︂
𝑘 − 𝑘

2

2

)︂
+

(︂
𝑘
2

2

)︂
+

(︀
𝑘 − 𝑘

2

)︀
𝑘

2
+ Θ

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘 − 𝑘
2

)︂]︂(︂
𝑘 − 𝑘

2

2

)︂)︃
−𝑂

(︂√︁
𝑘𝑘 log 𝑛+

(︀
𝑘
)︀𝛽√︀

log 𝑛

)︂

which since 𝛽 < 1 and 𝑘 ≤ 𝑘 is at least

1

2

(︂
𝑘 − 𝑘

2

2

)︂
+

(︂
𝑘
2

2

)︂
+

(︀
𝑘 − 𝑘

2

)︀
𝑘

2
+ Θ

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘 − 𝑘
2

)︂]︂(︂
𝑘 − 𝑘

2

2

)︂)︃
−𝑂

(︁
𝑘
√︀
log 𝑛

)︁
. (6.104)

Furthermore, Lemma 6.8.3 implies

Γ𝑘,𝑘(0) =
1

2

(︂
𝑘

2

)︂
+Θ

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘

)︂]︂(︂
𝑘

2

)︂)︃
. (6.105)

Hence, to establish (6.101) using (6.105), (6.106) it suffices to show that

1

2

(︂
𝑘 − 𝑘

2

2

)︂
+

(︂
𝑘
2

2

)︂
+

(︀
𝑘 − 𝑘

2

)︀
𝑘
2

2
+ Θ

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘 − 𝑘
2

)︂]︂(︂
𝑘 − 𝑘

2

2

)︂)︃

is bigger than
1

2

(︂
𝑘

2

)︂
+Θ

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘

)︂]︂(︂
𝑘

2

)︂)︃
+ 𝜔

(︁
𝑘
√︀

log 𝑛
)︁
.

By direct computation we have

1

2

(︂
𝑘 − 𝑘

2

2

)︂
+

(︂
𝑘/2

2

)︂
+

(︀
𝑘 − 𝑘

2

)︀
𝑘
2

2
− 1

2

(︂
𝑘

2

)︂
=
𝑘2

16
−𝑂

(︀
𝑘
)︀
.
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Hence, it suffices to have

𝑘2 = 𝜔

(︃√︃
log

[︂(︂
𝑛− 𝑘

𝑘

)︂]︂(︂
𝑘

2

)︂
−
√︃
log

[︂(︂
𝑛− 𝑘

𝑘 − 𝑘

)︂]︂(︂
𝑘 − 𝑘

2

)︂)︃
+ 𝜔

(︁
𝑘
√︀
log 𝑛

)︁
. (6.106)

Now using the elementary
(︀
𝑛−𝑘
𝑘

)︀
≤ (𝑛𝑒

𝑘
)𝑘 and

(︀
𝑛−𝑘
𝑘−𝑘

)︀
≥ ( (𝑛−𝑘)

𝑘
)𝑘−𝑘 and the fact that 𝑘 = Θ

(︀
𝑛𝐶
)︀

for 𝐶 < 1/2 we conclude for (6.107) to hold, it suffices to have

𝑘2 = 𝜔(
(︁
(𝑘)

3
2 − (𝑘 − 𝑘)

3
2

)︁√︀
log 𝑛) + 𝜔

(︁
𝑘
√︀
log 𝑛

)︁
.

Using the elementary inequality, implied by mean value theorem, that for 0 < 𝑎 ≤ 𝑏, 𝑎
3
2 − 𝑏

3
2 ≤

3
2

√
𝑎 (𝑎− 𝑏) it suffices

𝑘2 = 𝜔
(︁√︀

𝑘𝑘
√︀

log 𝑛
)︁
+ 𝜔

(︁
𝑘
√︀

log 𝑛
)︁

which now follows directly from our assumptions 𝑘2 = 𝜔
(︀
𝑘 log 𝑛

𝑘2

)︀
and 𝑘 ≤ 𝑘 = 𝑛𝐶 for 𝐶 < 1/2.

The proof of (6.101) and therefore of (6.98) and (6.11) is complete.

We now show how (6.96), (6.99) and (6.101) established above imply the presence of OGP

w.h.p. as 𝑛→ +∞. We set

𝜁1 := 𝑢1, 𝜁2 := 𝑢2 and 𝑟 := Γ𝑘,𝑘(0)−
𝑐0
2

𝑘

log
(︀
𝑛
𝑘

)︀ .

We start with the second property of 𝑘-OGP. By the definition of 𝜁1, 𝜁2, 𝑟 and (6.96) we have

max
𝑧∈ℐ∩[𝜁1,𝜁2]

𝑑𝑘,𝑘(𝐺)(𝑧) < 𝑟,

w.h.p. as 𝑛 → +∞. Using now the definition of 𝑑𝑘,𝑘(𝐺)(𝑧) the last displayed equality directly

implies that there is no 𝑘-vertex subset 𝐴 with |E[𝐴]| ≥ 𝑟 with |𝐴∩𝒫𝒞| ∈ [𝜁1, 𝜁2], as we wanted.

For the first part, notice that (6.99), (6.101) and the definition of 𝑟 imply

min{𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(
𝑘

2
)} > 𝑟,

w.h.p. as 𝑛 → +∞. Using the definitions of 𝑑𝑘,𝑘(𝐺)(0), 𝑑𝑘,𝑘(𝐺)(𝑘2 ) respectively we conclude the

existence of a 𝑘-vertex subset 𝐴 with |E[𝐴]| ≥ 𝑟 and |𝐴 ∩ 𝒫𝒞| = 0 and of a 𝑘-vertex subset 𝐵
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with |E[𝐵]| ≥ 𝑟 and |𝐵 ∩ 𝒫𝒞| = 𝑘
2
, w.h.p. as 𝑛→ +∞. Since (6.95) holds, we conclude the first

property of 𝑘-OGP. This completes the proof of the presence of 𝑘-OGP and of Theorem 6.2.9.
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6.7 Conclusion and future directions

The work presented in this Chapter studies the OGP for the planted clique problem. We focus

on the way dense subgraphs of the observed graph 𝐺
(︀
𝑛, 1

2
, 𝑘
)︀

overlap with the planted clique and

offer first moment evidence of a fundamental OGP phase transition at 𝑘 = Θ(
√
𝑛). We establish

part of the conjectured OGP phase transition by showing that for any 𝑘, 𝑘 satisfying for large 𝑛,

𝑘 ≤ 𝑘 = 𝑂 (𝑛0.0917) OGP does hold. All of our results are for overparametrized 𝑘-vertex dense

subgraphs, where 𝑘 ≥ 𝑘. Introducing this additional free parameter is essential for establishing

our results.

Our work prompts to multiple future research directions.

(1) The first and most relevant future direction is establishing the rest parts of Conjecture

6.2.8. We pose this as the main open problem out of this work.

(2) Our result on the value of the 𝐾-densest subgraph of an Erdős-Rényi model 𝐺
(︀
𝑛, 1

2

)︀
shows

tight concentration of the first and second order behavior of the quantity 𝑑ER,𝐾(𝐺0) defined

in (6.12), and applies for any 𝐾 ≤ 𝑛0.5−𝜖, for 𝜖 > 0.

Improving on the third order bounds established in Corollary 2 is of high interest. If the

third order term can be proven to be 𝑜 (𝐾) for any 𝐾 ≤ 𝑛0.5−𝜖 (currently established only

for 𝐾 ≤ 𝑛0.0917) then the first part 1(a) of Conjecture 6.2.8 can be established by following

the arguments of this Chapter.

Studying the𝐾-densest subgraph problem for higher values of𝐾 appears also an interesting

mathematical quest. According to Corollary 2 the second order term behaves as Θ
(︁
𝐾

3
2

)︁

(up-to-log 𝑛 terms) when 𝐾 ≤ 𝑛
1
2
−𝜖. The identification of the exact constant in front of

𝐾
3
2 is interesting. When 𝐾 = Θ(𝑛) the constant is naturally expected to be related to

the celebrated Parisi formula (see e.g. [JS18] for similar results for the random MAX-CUT

problem and [Sen] for a general technique).

(3) In this Chapter, we use the overparametrization technique as a way to study the landscape

of the planted clique problem. Overparametrization has been used extensively in the litera-

ture for smoothening “bad" landscapes, but predominantly in the context of deep learning.

To the best of our knowledge this is the first time it is used to study computational-
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statistical gaps. Without overparametrization the first moment curve obtains a phase

transition at the peculiar threshold 𝑘 = 𝑛
2
3 , far above the conjectured onset of algorith-

mic hardness threshold 𝑘 =
√
𝑛. Can the technique of overparametrization be used to

study the OGP phase transition of other computational-statistical gaps? An interesting

candidate would be the 3-tensor PCA problem. In this problem, a landscape property

called free-energy wells, which is similar to OGP, seems to be appearing in a different place

from the conjectured algorithmic threshold (see [BAGJ18] and the discussion therein). It

would be very interesting if the free energy wells-algorithmic gap could close using the

overparametrization technique.

(4) Last but not least, our work suggests an algorithmic direction. As explained in the in-

troduction, the presence of OGP is rigorously linked with the failure of local methods in

multiple problems in the literature. We consider an interesting direction to rigorously show

the failure of various fundamental local search methods for finding the planted clique, for

example MCMC methods such as Metropolis-Hastings algorithm or the Glauber dynamics,

using the presence of 𝑘-OGP as defined in this Chapter.
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6.8 Auxilary lemmas

Lemma 6.8.1. Let 𝑀,𝑁 ∈ N with 𝑁 → +∞. Let 𝑋1, 𝑋2, . . . , 𝑋𝑁 abritrary correlated random

variables and 𝑌1, 𝑌2, . . . , 𝑌𝑁 i.i.d. Bin
(︀
𝑀, 1

2

)︀
, all living in the same probability space. We also

assume (𝑌𝑖)𝑖=1,2,...,𝑁 are independent of (𝑋𝑖)𝑖=1,2,...,𝑁 . Then

max
𝑖=1,2,...,𝑁

{𝑋𝑖 + 𝑌𝑖} ≥ max
𝑖=1,2,...,𝑁

{𝑋𝑖}+max{𝑀
2

−
√︀
𝑀 log log𝑁, 0},

w.h.p. as 𝑁 → +∞.

Proof. It suffices to show that for 𝑖* := argmax𝑖=1,2,...,𝑁 𝑋𝑖,

𝑌𝑖* ≥
𝑀

2
−
√︀
𝑀 log log𝑁

w.h.p. as 𝑁 → +∞. The result now easily follows from standard Chernoff bound and indepen-

dence between (𝑌𝑖)𝑖=1,2,...,𝑁 and 𝑖*.

For the following two lemmas recall that ℎ is defined in (6.5) and for 𝛾 ∈ (1
2
, 1), 𝑟(𝛾, 1

2
) is

defined in (6.7).

Lemma 6.8.2. Let 𝑁 ∈ N growing to infinity and 𝛾 = 𝛾𝑁 > 1
2

with lim𝑁 𝛾𝑁 = 1
2

and

lim𝑁

(︀
𝛾𝑁 − 1

2

)︀√
𝑁 = +∞.

Then for 𝑋 following Bin(𝑁, 1
2
) and 𝑁 → +∞ it holds

P (𝑋 = ⌈𝛾𝑁⌉) = exp

(︂
−𝑁𝑟(𝛾, 1

2
)− log𝑁

2
+𝑂 (1)

)︂

and

P (𝑋 ≥ ⌈𝛾𝑁⌉) = exp

(︂
−𝑁𝑟(𝛾, 1

2
)− Ω

(︂
log

(︂(︂
𝛾 − 1

2

)︂√
𝑁

)︂)︂)︂
,

where 𝑟
(︀
𝛾, 1

2

)︀
is defined in (6.7).

Proof. We have by Stirling approximation

(︂
𝑁

⌈𝛾𝑁⌉

)︂
= exp

(︂
𝑁ℎ (𝛾)− 1

2
log (𝑁𝛾 (1− 𝛾)) +𝑂 (1)

)︂
(6.107)
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In particular, using 𝑟
(︀
𝛾, 1

2

)︀
= ℎ

(︀
1
2

)︀
− ℎ (𝛾) = log 2− ℎ (𝛾) and that 𝛾 = 1

2
+ 𝑜𝑁 (1) we conclude

P (𝑋 = ⌈𝛾𝑁⌉) =
(︂

𝑁

⌈𝛾𝑁⌉

)︂
1

2𝑁
= exp(−𝑁𝑟(𝛾, 1

2
)− 1

2
log𝑁 +𝑂 (1))

Now using standard binomial coefficient inequalities (see e.g. Proposition 1(c) in [Kla00]) we

have that for any 1 ≤ 𝑘 ≤ 𝑁/2,

P
(︂
𝑋 ≥

⌈︂
𝑁

2
+ 𝑘

⌉︂)︂
≤

𝑁
2
+ 𝑘

2𝑘 + 1
P
(︂
𝑋 =

⌈︂
𝑁

2
+ 𝑘

⌉︂)︂
.

Hence for large enough 𝑁 if we set 𝑘 =
(︀
𝛾 − 1

2

)︀
𝑁 we have,

P (𝑋 ≥ ⌈𝛾𝑁⌉) ≤
(︂

𝛾

2𝛾 − 1
+ 𝑜 (1)

)︂
P (𝑋 = ⌈𝛾𝑁⌉)

=

(︂
𝛾

2𝛾 − 1
+ 𝑜 (1)

)︂
exp(−𝑁𝑟(𝛾, 1

2
)− 1

2
log𝑁 +𝑂 (1))

= (1 + 𝑜 (1))

(︂
𝛾

2𝛾 − 1

)︂
exp(−𝑁𝑟(𝛾, 1

2
)− 1

2
log𝑁 +𝑂 (1)), since lim

𝑁
𝛾𝑁 =

1

2
> 0

= exp

(︂
−𝑁𝑟(𝛾, 1

2
) + log

(︂
2𝛾

(2𝛾 − 1)
√
𝑁

)︂
+𝑂(1)

)︂

= exp

(︂
−𝑁𝑟(𝛾, 1

2
)− Ω

(︂
log

(︂(︂
𝛾 − 1

2

)︂√
𝑁

)︂)︂)︂
.

The proof of the Lemma 6.8.2 is complete.

Lemma 6.8.3. For 𝜖 = 𝜖𝑛 → 0, it holds

ℎ−1 (log 2− 𝜖) =
1

2
+

1√
2

√
𝜖− 1

6
√
2
𝜖
3
2 +𝑂

(︁
𝜖
5
2

)︁
.

Proof. Let Φ(𝑥) :=
√︁

log 2− ℎ
(︀
1
2
+ 𝑥
)︀
, 𝑥 ∈ [0, 1

2
]. We straightforwardly calculate that for the

sequence of derivatives at 0, 𝑎𝑖 := Φ(𝑖)(0), 𝑖 ∈ Z≥0 it holds 𝑎0 = 0, 𝑎1 =
√
2, 𝑎2 = 0, 𝑎3 = 2

√
2

and 𝑎4 = 0.

Notice that for all 𝜖 ∈ (0, log 2) and Φ−1 the inverse of Φ,

ℎ−1 (log 2− 𝜖) =
1

2
+ Φ−1(

√
𝜖).
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Lemma follows if we establish that Taylor expansion of Φ−1 around 𝑦 = 0 is given by

Φ−1(𝑦) =
1√
2
𝑦 − 1

6
√
2
𝑦3 +𝑂

(︀
𝑦5
)︀
. (6.108)

Clearly Φ−1(0) = 0. For 𝑏𝑖 := (Φ−1)
(𝑖)

(0), 𝑖 ∈ Z≥0 by standard calculations using the Lagrange

inversion theorem we have 𝑏0 = 0,

𝑏1 =
1

𝑎1
=

1√
2
,

𝑏2 = − 𝑎2
2𝑎1

= 0,

𝑏3 =
1

2
√
2

[︃
−𝑎3
𝑎1

+ 3

(︂
𝑎2
𝑎1

)︂2
]︃
= − 1√

2

and

𝑏4 =
1

4

[︂
−𝑎4
𝑎1

+
10

3

𝑎2𝑎3
𝑎21

− 60
𝑎2
𝑎1

]︂
= 0.

From this point, Taylor expansion yields that for small 𝑦

Φ−1(𝑦) = 𝑏0 + 𝑏1𝑦 +
𝑏2
2
𝑦2 +

𝑏3
6
𝑦3 +

𝑏4
24
𝑦4 +𝑂

(︀
𝑦5
)︀

which given the values of 𝑏𝑖, 𝑖 = 0, 1, 2, 3, 4 yields (6.109). The proof of the Lemma is complete.

The following elementary calculus properties are used throughout the proof sections.

Lemma 6.8.4. Suppose (𝑎𝑛)𝑛∈N , (𝑏𝑛)𝑛∈N are two sequences of positive real numbers. The fol-

lowing are true.

(a) The sequence 𝑎𝑛 log 𝑎𝑛 converges to zero if and only if 𝑎𝑛 converges to zero.

(b) The sequence 𝑎𝑛 log 𝑎𝑛 diverges to infinity if and only if 𝑎𝑛 diverges to infinity.

(c) Suppose 𝑏𝑛 diverges to infinity. Then 𝑎𝑛 log 𝑎𝑛 = 𝜔 (𝑏𝑛) if and only if 𝑎𝑛 = 𝜔
(︁

𝑏𝑛
log 𝑏𝑛

)︁
.

(d) Suppose 𝑏𝑛 diverges to infinity. Then 𝑎𝑛 = 𝜔 (𝑏𝑛 log 𝑏𝑛) if and only if 𝑎𝑛
log 𝑎𝑛

= 𝜔 (𝑏𝑛) .
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Proof. Both properties (a), (b) follow in a straightforward way from the continuity of the mapping

𝑥 ∈ (0,∞) → 𝑥 log 𝑥 ∈ R,

and the limiting behaviors

lim
𝑥→0

𝑥 log 𝑥 = 0, lim
𝑥→+∞

𝑥 log 𝑥 = +∞.

Regarding property (c): For the one direction, assume

lim
𝑛

𝑎𝑛 log 𝑎𝑛
𝑏𝑛

= +∞ (6.109)

and 𝑐𝑛 is defined by 𝑎𝑛 = 𝑐𝑛𝑏𝑛
log 𝑏𝑛

. It suffices to show 𝑐𝑛 diverges to infinity. By (6.110) we know

lim
𝑛
𝑐𝑛
log
(︁

𝑐𝑛𝑏𝑛
log 𝑏𝑛

)︁

log 𝑏𝑛
= +∞. (6.110)

Assuming lim inf𝑛 𝑐𝑛 < +∞ it follows since lim𝑛 𝑏𝑛 = +∞ that

lim inf
𝑛

𝑐𝑛
log
(︁

𝑐𝑛𝑏𝑛
log 𝑏𝑛

)︁

log 𝑏𝑛
≤ lim inf

𝑛
𝑐𝑛
log 𝑐𝑛 + log 𝑏𝑛

log 𝑏𝑛
≤ lim inf

𝑛
𝑐𝑛 <∞,

a direct contradiction with (6.111). This completes the proof of this direction.

For the other direction, assume

lim
𝑛

𝑎𝑛 log 𝑏𝑛
𝑏𝑛

= +∞ (6.111)

and 𝑐𝑛 is defined by 𝑎𝑛 log 𝑎𝑛 = 𝑐𝑛𝑏𝑛. It suffices to show 𝑐𝑛 diverges to infinity. By (6.112) we

know

lim
𝑛
𝑐𝑛
log
(︁

𝑎𝑛 log 𝑎𝑛
𝑐𝑛

)︁

log 𝑎𝑛
= +∞. (6.112)

Note that since 𝑏𝑛 diverges to infinity (6.112) implies that 𝑎𝑛 diverges to infinity as well. Assuming
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lim inf𝑛 𝑐𝑛 < +∞ it follows since lim𝑛 𝑎𝑛 = +∞ that

lim inf
𝑛

𝑐𝑛
log
(︁

𝑎𝑛 log 𝑎𝑛
𝑐𝑛

)︁

log 𝑎𝑛
≤ lim inf

𝑛
𝑐𝑛
log 𝑎𝑛 + log log 𝑎𝑛 − log 𝑐𝑛

log 𝑎𝑛
≤ lim inf

𝑛
𝑐𝑛 <∞,

a direct contradiction with (6.113). This completes the proof of this direction.

Property (d) follows by similar reasoning as in the case of property (c).
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Chapter 7

Conclusion

In this thesis, we study the computational and statistical challenges of two well-established high

dimensional statistical models; the high dimensional linear regression model and the planted

clique model. We establish multiple results regarding their statistical and computational limits.

From a statistical perspective, in Chapter 2 we identify, under certain assumptions, sharply the

statistical limit of high dimensional linear regression revealing an all-to-nothing phase transition.

From a computational perspective, in Chapter 5 we propose a new polynomial-time algorithm

for noiseless high dimensional linear regression using lattice basis reduction, which can provably

recover the vector of coefficients with access to only one sample, 𝑛 = 1.

A large focus of this thesis is dedicated to studying the property that for both these models,

statistical inference using unbounded computational power becomes possible in regimes where

no computationally efficient method is known to succeed, a property known as a computational-

statistical gap. In Chapters 3 and 4 we study the computational statistical gap of high di-

mensional linear regression, and in Chapter 6, we study the computational statistical gap of

the planted clique model. In both cases we offer a possible explanation to this phenomenon

by providing a rigorous link between the computational statistical gap and the presence of a

certain Overlap Gap Property. The Overlap Gap Property find its origin in spin glass theory

and is known to be linked with algorithmic hardness. We conjecture that this connection is of

fundamental nature and the study of the Overlap Gap Property can provide a rigorous generic

explanation for the appearance of computational-statistical gaps in high dimensional statistical

models.
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