High-dimensional statistical models undergo phase transitions

small changes in the parameters of the model imply /arge changes in the model

(e.g. large changes in terms of recovery error).

A canonical example

Principal Component Analysis [BBP’05];
For 8 ~ Unif (§P~1) and W, ; = W, ; ~ N(0,1) (Wigner),

Y =/ pBBT + W
. o] [ <1l,ifA>1
S E[1s-EpvIE] = {17

Under (sublinear) sparsity: Much sharper transitions

Sparse Linear Regression
For 8 ~ Unif({v € {0, ﬁ}p, lvllo = k}), Xi.5 Wi ~ N (0,1),

Y =X5+ocW eR"

[Gamarnik, Zadik 17], [Reeves, Xu, Zadik '19] ‘“The All-or-Nothing Phenomenon”

For some critical sample size n* and k = o(,/p), if SNR = k/o? — +o0,

0,fn>n"
1,ifn<n®.
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Figure from [Reeves, Xu, Zadik '19], MMSE vs n/n* ask/p = ¢ — 0.

Sparse (tensor) PCA
For 8 ~ Unif({v € {0, \/L%}p, |vllo = k}), W;; ~ N (0,1) and d > 2,

Y — \/Q)Jc log %@W LW

[Barbier, Macris, Rush *20] If d = 2 (the matrix case), p5 < k = o(p) then

| JIf
lim E[Hﬂ—E[ﬁ!Y] H%} _{(1) ,:f)\i;
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Bernoulli Group Testing
For 5 ~ Unif({v € {0, \/L%}p, |vllo = k}), X; ; ~ Bern(In2/k)

Y = (1 (<X7 U> > 1))@':1,...,77, = {07 1}71.

[Truong, Aldridge, Scarlett ’20] For some critical sample size n* and k = po(l),

0,ifn>n"
1,ifn<n®.
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Main Contributions

e Systematic study of a simple but generic inference model
(the Gaussian Additive Model)

e A simple necessary and sufficient condition for all-or-nothing to hold.
e Sparse tensor PCA exhibits all-or-nothing for alld > 2 and k = o(p).

The Gaussian Additive Model

For arbitrary discrete S = S, ¢ SP~! = {v € R? : ||v||y = 1}, let 3 ~ P, := Unif(S,) and
Wi~ N (Ov 1) ,
Yy = \/Xﬁ + W.
Subcases:
e Sparse Tensor PCA: S = {v®¢ : v € {0, \/i%}p, |v]lo = k}.

e Submatrix Localization: S = {(1,(;)—g(;) — %%‘,je[n] 20 [n] = |k] “balanced”}.
“Gaussian version of stochastic block model”

Definition 1 A sequence of priors (Py),cn satisfies the all-or-nothing phenomenon holds
if for some critical \o = \:(S,p):

pgrgoEHﬂ—E[ﬁ\YﬂHz— {1 ifA < M.

An equivalent condition

Definition 2 We denote by D the Kullback-Leibler divergence; given two random variables
Z1, Zo with the law of Z1, Py, absolutely continuous to the law of Z5, P,

D(Zy,25) =E [j;g;; 8 (ji;%;)] |

Theorem 1 Suppose |S| = |S;| = +oo and S is “sufficiently spread out™ as p — +oo.
A sequence {P,} satisfies the all-or-nothing phenomenon for some . if and only if

, 1
P Tog 15y Y2 log |5, Y0) = 0

and A\. = (1+ o(1))21og | S|

*Sufficient spread is necessary for “all” recovery to happen.
Key Intuition

¢ |-MMSE formula: d 11
DYV, Y0) = 5 — SElI5 — E[BIVA[3

An abrupt change in the slope of KL!

e All-or-nothing phenomenon at X, if and only if

1 1
phm )\CD<Y04)\67Y0) 2(04 1)+ Va > 0.
e Since limiting KL is Lipschitz, convex, and nonnegative, evaluating the limit ata oo = 1

and a — oo gives information about the whole function.

e For “large” a > 1, ALCD(YMC, o) =9 — [(@:@Ac) ~ G — bgA—‘CS‘. Hence \. =~ 2log |S].

1
lim —D(Y,;, ¥,)

pP—00 A¢
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“Near-orthogonality” implies all-or-nothing

Corollary 1 (Informal) Suppose S = S, consist of “nearly-orthogonal” vectors, rigorously
for any t > 0 and large p,

9 _ 2t
PO2((X, X') > t) < |S| 77

then all-or-nothing phenomenon always holds at A\. = 21og |S)|.
Proof by conditional second moment method [Banks et al. '18, Perry et al. "20].

Easy implication: Any uniform distribution over discrete subsets of orthogonal vectors
satisfies the all-or-nothing phenomenon!

Application: Sparse Tensor PCA

Theorem 2 For any d > 2 and k = o(p), the sparse tensor PCA model

Y = \/2)\klog (%)5®d+w, B~ f)p

with P, = Unif({v € {0, ﬁ}p |||l = k})exhibits the all-or-nothing phenomenon:

lim E[5%! - E[s%|Y]|]* =

pP— 00

1 IfA<1
0 ifA>1.
Proof idea

o If 3 and 3’ are independent draws from P, = Unif({v € {0, \/L%}p :|lvllo = k}), then the
overlap {3, 3') is a rescaled Hypergeometric random variable.

e When k = o(p), this distribution satisfies PS2((3, 8) > t) < | S|~ tTolb).

e Therefore, for any d > 2,

~ _ld 2t
PE2((5%d, (8")2dy > 1) < |5t el < |57

Result follows from Corollary 1.

Open questions

e How does Theorem 1 extend to more general models (e.g. GLMs)?
e All-or-nothing for polynomial-time estimators?
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