Orthogonal Machine Learning: Power and Limitations

Ilias Zadik¹, joint work with Lester Mackey², Vasilis Syrgkanis²

¹Massachusetts Institute of Technology (MIT) and ²Microsoft Research New England (MSRNE)

35th International Conference on Machine Learning (ICML) 2018

L. Mackey, V. Syrgkanis I. Zadik (MIT)

A 回 > A 回 > A 回 >

Introduction

Main Application: Pricing a product in the digital economy!

э

イロト イヨト イヨト イヨト

Main Application: Pricing a product in the digital economy!

Simple: Plot Demand and Price and run Linear Regression:

∃ ► < ∃ ►

Introduction

Challenge: What if the bottom points are from the Summer and upper from the Winter? Then new Linear Regression:

A B A A B A

Introduction

Challenge: What if the bottom points are from the Summer and upper from the Winter? Then new Linear Regression:

In current reality, thousands of confounders like seasonality simultaneously affect price and demand; How do we price correctly?

★ ∃ ► < ∃ ►</p>

The Partially Linear Regression Problem (PLR)

Definition (Partially Linear Regression (PLR))

Let $p \in \mathbb{N}$, $\theta_0 \in \mathbb{R}$, $f_0, g_0 : \mathbb{R}^p \to \mathbb{R}$.

- $\mathsf{T} \in \mathbb{R}$ treatment or policy applied [e.g. price],
- $Y \in \mathbb{R}$ outcome of interest [e.g. demand],
- $X \in \mathbb{R}^p$ vector of associated covariates [e.g. seasonality..]. Related by

$$\begin{split} \mathbf{Y} &= \theta_0 \mathsf{T} + \mathsf{f}_0(\mathsf{X}) + \epsilon, \quad \mathbb{E}[\epsilon \mid \mathsf{X},\mathsf{T}] = 0 \quad \text{a.s.} \\ \mathsf{T} &= \mathsf{g}_0(\mathsf{X}) + \eta, \quad \mathbb{E}[\eta \mid \mathsf{X}] = 0 \quad \text{a.s., Var}\left(\eta\right) > 0, \end{split}$$

where η , ϵ represent noise variables.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Partially Linear Regression Problem (PLR)

Definition (Partially Linear Regression (PLR))

Let $p \in \mathbb{N}$, $\theta_0 \in \mathbb{R}$, $f_0, g_0 : \mathbb{R}^p \to \mathbb{R}$.

- $\mathsf{T} \in \mathbb{R}$ treatment or policy applied [e.g. price],
- $Y \in \mathbb{R}$ outcome of interest [e.g. demand],
- $X \in \mathbb{R}^p$ vector of associated covariates [e.g. seasonality..]. Related by

$$\begin{split} \mathbf{Y} &= \theta_0 \mathsf{T} + \mathsf{f}_0(\mathsf{X}) + \epsilon, \quad \mathbb{E}[\epsilon \mid \mathsf{X}, \mathsf{T}] = 0 \quad \text{a.s.} \\ \mathsf{T} &= \mathsf{g}_0(\mathsf{X}) + \eta, \quad \mathbb{E}[\eta \mid \mathsf{X}] = 0 \quad \text{a.s., } \mathsf{Var}\left(\eta\right) > 0, \end{split}$$

where η , ϵ represent noise variables.

Goal: Given n iid samples of (Y_i, T_i, X_i) , i = 1, ..., n find a \sqrt{n} -consistent asymptotically normal $(\sqrt{n}$ -a.n.) estimator of θ_0 ; $\sqrt{n}(\hat{\theta}_0 - \theta_0) \rightarrow N(0, \sigma^2)$.

< □ > < 同 > < 回 > < 回 > < 回 >

PLR: Challenges and Main Question

Hence, n samples for learning θ_0 , but ...

э

イロト イボト イヨト イヨト

PLR: Challenges and Main Question

Hence, n samples for learning θ_0 , but ...

Challenge 1: Except θ_0 we also need to learn $f_0, g_0!$

イロト イポト イヨト イヨト

PLR: Challenges and Main Question

Hence, n samples for learning θ_0 , but ...

Challenge 1: Except θ_0 we also need to learn $f_0, g_0!$

Challenge 2: And we do not really want to spend too many samples learning them (more than necessary to estimate θ_0 !)

(日)

Hence, n samples for learning θ_0 , but ...

Challenge 1: Except θ_0 we also need to learn $f_0, g_0!$

Challenge 2: And we do not really want to spend too many samples learning them (more than necessary to estimate θ_0 !)

Main Question: What is the **optimal learning rate** of the nuisance functions f_0, g_0^* so that we get a \sqrt{n} -a.n. estimator of θ_0 ?

*Maximum a_n so that $\|\hat{f}_0 - f_0\|$, $\|\hat{g}_0 - g_0\| = o(a_n)$ suffices.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• Trivial Rate, learn f_0, g_0 at $n^{-\frac{1}{2}}$ -rate.

э

イロト イボト イヨト イヨト

- Trivial Rate, learn f_0, g_0 at $n^{-\frac{1}{2}}$ -rate.
- [Chernozhukov et al, 2017]: It suffices to learn f₀, g₀ at n^{-1/4}-rate to constuct a √n-a.n. estimator of θ₀.

- Trivial Rate, learn f_0, g_0 at $n^{-\frac{1}{2}}$ -rate.
- [Chernozhukov et al, 2017]: It suffices to learn f₀, g₀ at n^{-¹/₄}-rate to constuct a √n-a.n. estimator of θ₀.

The technique is based on

- Generalized Method of Moments (Z-estimation)
- with a "First Order Orthogonal Moment".

< 回 > < 三 > < 三 > <

Z-Estimation for PLR

Choose m such that $\mathbb{E}\left[m(Y,T,f_0(X),g_0(X),\theta_0)|X\right]=0, \quad a.s..$

L. Mackey, V. Syrgkanis I. Zadik (MIT)

э

イロト イヨト イヨト イヨト

Z-Estimation for PLR

Choose m such that $\mathbb{E}\left[m(Y, T, f_0(X), g_0(X), \theta_0)|X\right] = 0$, a.s..

Given n samples $Z_i = (X_i, T_i, Y_i)$,

- (Stage 1) Use $\mathsf{Z}_{n+1},\ldots,\mathsf{Z}_{2n}$ samples to form $\hat{\mathsf{f}}_0,\hat{\mathsf{g}}_0\sim\mathsf{f}_0,\mathsf{g}_0.$
- (Stage 2) Use Z_1, \ldots, Z_n to find $\hat{\theta}_0$ by solving

$$\frac{1}{n}\sum_{t=1}^{n}m(T_{t},Y_{t},\hat{f}_{0}(X_{t}),\hat{g}_{0}(X_{t}),\hat{\theta}_{0})=0.$$

イロト 不得 トイヨト イヨト 二日

Z-Estimation for PLR

Choose m such that $\mathbb{E}\left[m(Y, T, f_0(X), g_0(X), \theta_0)|X\right] = 0$, a.s..

Given n samples $Z_i = (X_i, T_i, Y_i)$,

- (Stage 1) Use $\mathsf{Z}_{n+1},\ldots,\mathsf{Z}_{2n}$ samples to form $\hat{\mathsf{f}}_0,\hat{\mathsf{g}}_0\sim\mathsf{f}_0,\mathsf{g}_0.$
- (Stage 2) Use Z_1, \ldots, Z_n to find $\hat{\theta}_0$ by solving

$$\frac{1}{n}\sum_{t=1}^{n}m(T_{t},Y_{t},\hat{f}_{0}(X_{t}),\hat{g}_{0}(X_{t}),\hat{\theta}_{0})=0.$$

[Chernozhukov et al, 2017] suggests a simple first-order orthogonal moment

$$\mathsf{m}(\mathsf{Y},\mathsf{T},\mathsf{f}(\mathsf{X}),\mathsf{g}(\mathsf{X}),\theta) = (\mathsf{Y} - \theta\mathsf{T} - \mathsf{f}(\mathsf{X}))(\mathsf{T} - \mathsf{g}(\mathsf{X}))$$

for PLR. For this choice $n^{-\frac{1}{4}}$ first stage error suffices!

Definition (First-Order Orthogonality)

A moment $m:\mathbb{R}^p\to\mathbb{R}$ is first-order orthogonal with respect to the nuisance function if

$$\mathbb{E}\left[\nabla_{\gamma}\mathsf{m}(\mathsf{Y},\mathsf{T},\gamma,\theta_{0})|_{\gamma=(\mathsf{f}_{0}(\mathsf{X}),\mathsf{g}_{0}(\mathsf{X}))}\,|\,\mathsf{X}\right]=0.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition (First-Order Orthogonality)

A moment $m:\mathbb{R}^p\to\mathbb{R}$ is first-order orthogonal with respect to the nuisance function if

$$\mathbb{E}\left[\nabla_{\gamma}\mathsf{m}(\mathsf{Y},\mathsf{T},\gamma,\theta_{0})|_{\gamma=(\mathsf{f}_{0}(\mathsf{X}),\mathsf{g}_{0}(\mathsf{X}))} \,|\,\mathsf{X}\right] = 0.$$

Intuition: Low sensitivity to first stage errors because of Taylor Expansion!

- 4 回 ト 4 三 ト 4 三 ト

Definition (First-Order Orthogonality)

A moment $m:\mathbb{R}^p\to\mathbb{R}$ is first-order orthogonal with respect to the nuisance function if

$$\mathbb{E}\left[\nabla_{\gamma}\mathsf{m}(\mathsf{Y},\mathsf{T},\gamma,\theta_{0})|_{\gamma=(\mathsf{f}_{0}(\mathsf{X}),\mathsf{g}_{0}(\mathsf{X}))} \,|\,\mathsf{X}\right] = 0.$$

Intuition: Low sensitivity to first stage errors because of Taylor Expansion!

Question 1: Can we generalize to higher order orthogonality? Will this improve the first stage error we can tolerate?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition (First-Order Orthogonality)

A moment $m:\mathbb{R}^p\to\mathbb{R}$ is first-order orthogonal with respect to the nuisance function if

$$\mathbb{E}\left[\nabla_{\gamma}\mathsf{m}(\mathsf{Y},\mathsf{T},\gamma,\theta_{0})|_{\gamma=(\mathsf{f}_{0}(\mathsf{X}),\mathsf{g}_{0}(\mathsf{X}))} \,|\,\mathsf{X}\right] = 0.$$

Intuition: Low sensitivity to first stage errors because of Taylor Expansion!

Question 1: Can we generalize to higher order orthogonality? Will this improve the first stage error we can tolerate?

Question 2: Does higher order orthogonal moments exist for PLR?

イロト イヨト イヨト ・

Definition: Higher-Order Orthogonality

Let $k \in \mathbb{N}$.

Definition (k-Orthogonal Moment)

The moment condition is called k-orthogonal, if for any $\alpha \in \mathbb{N}^2$ with $\alpha_1 + \alpha_2 \leq k$:

$$\mathbb{E}\left[\mathsf{D}^{\alpha}\mathsf{m}(\mathsf{Y},\mathsf{T},\mathsf{f}_{0}(\mathsf{X}),\mathsf{g}_{0}(\mathsf{X}),\theta_{0})|\mathsf{X}\right]=0.$$

where

$$\mathsf{D}^{\alpha} = \nabla^{\alpha_1}_{\gamma_1} \nabla^{\alpha_2}_{\gamma_2}$$

and γ_i 's are the coordinates of the nuisance f_0, g_0 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Result on k-Orthogonality: $n^{-\frac{1}{2k+2}}$ rate suffices!

Theorem (informal)

Let m be a moment which is k-orthogonal and satisfies certain identifiability and smoothness assumptions. Then if the Stage 1 error of estimating f_0, g_0 is

$$o(n^{-\frac{1}{2k+2}}),$$

the solution to the Stage 2 equation $\hat{\theta}_0$ is a \sqrt{n} -a.n. estimator of θ_0 .

Main Result on k-Orthogonality: $n^{-\frac{1}{2k+2}}$ rate suffices!

Theorem (informal)

Let m be a moment which is k-orthogonal and satisfies certain identifiability and smoothness assumptions. Then if the Stage 1 error of estimating f_0, g_0 is

$$o(n^{-\frac{1}{2k+2}}),$$

the solution to the Stage 2 equation $\hat{\theta}_0$ is a \sqrt{n} -a.n. estimator of θ_0 .

Comments:

- The existence of a smooth k-orthogonal moment implies $n^{-\frac{1}{2k+2}}$ nuisance error suffices!
- The proof is based on a careful higher-order Taylor Expansion argument.
- The original Theorem deals with a much more general case of GMM than PLR (Come to Poster for details!)

イロト イボト イヨト イヨト

2-orthogonal moment for PLR: A Gaussianity Issue

Question: Can we construct a 2-orthogonal moment for PLR?

L. Mackey, V. Syrgkanis I. Zadik (MIT)

2-orthogonal moment for PLR: A Gaussianity Issue

Question: Can we construct a 2-orthogonal moment for PLR?

Gist of the Result: Yes if and only if the treatment residual $\eta | X$ is not normally distributed!

イロト イヨト イヨト ・

2-orthogonal moment for PLR? Limitations!

Limitation: No if $\eta | X$ is normally distributed!

< ロ > < 同 > < 回 > < 回 > < 回 > <

2-orthogonal moment for PLR? Limitations!

Limitation: No if $\eta | X$ is normally distributed!

Theorem (informal)

Assume $\eta|X$ is normally distributed. Then there is no m which is

- 2-orthogonal
- satisfies certain identifiability and smoothness assumptions and,
- the solution of Stage 2 satisfies $\hat{\theta}_0 \theta_0 = O_P(\frac{1}{\sqrt{n}})$.

2-orthogonal moment for PLR? Limitations!

Limitation: No if $\eta | X$ is normally distributed!

Theorem (informal)

Assume $\eta|X$ is normally distributed. Then there is no m which is

- 2-orthogonal
- satisfies certain identifiability and smoothness assumptions and,
- the solution of Stage 2 satisfies $\hat{\theta}_0 \theta_0 = O_P(\frac{1}{\sqrt{n}})$.

The proof is based on Stein's Lemma: $\mathbb{E}[q'(Z)] = \mathbb{E}[Zq(Z)]$ for $Z \sim N(0, 1)$, which allows us to **connect algebraicelly** 2-orthogonality with the assymptotic variance of $\hat{\theta}_0$!

イロト 不得 トイヨト イヨト

2-orthogonal moment for PLR? Power!

Power: **Yes** if $\eta | X$ is **not** normally distributed!

э

イロト イボト イヨト イヨト

2-orthogonal moment for PLR? Power!

Power: **Yes** if $\eta | X$ is **not** normally distributed!

Technical Detail before Theorem: We need to change nuisance from f_0, g_0 to $q_0 = \theta_0 g_0 + f_0, g_0$ for our positive result.

- 4 同 ト 4 三 ト - 4 三 ト - -

2-orthogonal moment for PLR? Power!

Power: **Yes** if $\eta | X$ is **not** normally distributed!

Technical Detail before Theorem: We need to change nuisance from f_0, g_0 to $q_0 = \theta_0 g_0 + f_0, g_0$ for our positive result.

Theorem

Under the PLR model, suppose that we know $\mathbb{E}[\eta^r|X]$, $\mathbb{E}[\eta^{r-1}|X]$ and that $\mathbb{E}[\eta^{r+1}] \neq r\mathbb{E}[\mathbb{E}[\eta^2|X]\mathbb{E}[\eta^{r-1}|X]]$ for some $r \in \mathbb{N}$, so that $\eta|X$ is **not** a.s. Gaussian. Then the moments

$$\begin{split} & \mathsf{m}\left(\mathsf{X},\mathsf{Y},\mathsf{T},\theta,\mathsf{q}(\mathsf{X}),\mathsf{g}(\mathsf{X})\right) \\ & := (\mathsf{Y}-\mathsf{q}(\mathsf{X})-\theta\left(\mathsf{T}-\mathsf{g}(\mathsf{X})\right)) \\ & \times \left((\mathsf{T}-\mathsf{g}(\mathsf{X}))^{\mathsf{r}}-\mathbb{E}[\eta^{\mathsf{r}}|\mathsf{X}]-\mathsf{r}\left(\mathsf{T}-\mathsf{g}(\mathsf{X})\right)\mathbb{E}[\eta^{\mathsf{r}-1}|\mathsf{X}]\right) \end{split}$$

are 2-orthogonal and satisfy identifiability and smoothness assumptions.

イロト イボト イヨト イヨト

2-orthogonal moment for PLR? Power (comments)

Comments:

(1) 2-orthogonal moment exist under non-Gaussianity of $\eta |X|$

Comments:

- (1) 2-orthogonal moment exist under non-Gaussianity of $\eta |X|$
- (2) Non-Gaussianity is standard in pricing (random discounts of a baseline price)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Comments:

- (1) 2-orthogonal moment exist under non-Gaussianity of $\eta |X|$
- (2) Non-Gaussianity is standard in pricing (random discounts of a baseline price)
- (3) Proof: Reverse Engineer The Limitation Theorem.

Comments:

- (1) 2-orthogonal moment exist under non-Gaussianity of $\eta |X|$
- (2) Non-Gaussianity is standard in pricing (random discounts of a baseline price)
- (3) Proof: Reverse Engineer The Limitation Theorem.
- (4) More general result in the paper without knowning the conditional moments.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Suppose $f_0(X) = \langle X, \beta_0 \rangle$, $g_0(X) = \langle X, \gamma_0 \rangle$ for s-sparse $\beta_0, \gamma_0 \in \mathbb{R}^p$.

イロト 不得 トイラト イラト 一日

Suppose $f_0(X) = \langle X, \beta_0 \rangle$, $g_0(X) = \langle X, \gamma_0 \rangle$ for s-sparse $\beta_0, \gamma_0 \in \mathbb{R}^p$.

How **high sparsity** can we tolerate with the suggested methods? (Stage 1 Error \Leftrightarrow Bounds on sparsity)

Suppose $f_0(X) = \langle X, \beta_0 \rangle$, $g_0(X) = \langle X, \gamma_0 \rangle$ for s-sparse $\beta_0, \gamma_0 \in \mathbb{R}^p$.

How **high sparsity** can we tolerate with the suggested methods? (Stage 1 Error ⇔ Bounds on sparsity)

LASSO can learn s-sparse linear f_0, g_0 with error $\sqrt{\frac{s \log p}{n}}$. How does this compare to the error we can tolerate?

L. Mackey, V. Syrgkanis I. Zadik (MIT)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Suppose $f_0(X) = \langle X, \beta_0 \rangle$, $g_0(X) = \langle X, \gamma_0 \rangle$ for s-sparse $\beta_0, \gamma_0 \in \mathbb{R}^p$.

How **high sparsity** can we tolerate with the suggested methods? (Stage 1 Error ⇔ Bounds on sparsity)

LASSO can learn s-sparse linear f_0, g_0 with error $\sqrt{\frac{s \log p}{n}}$. How does this compare to the error we can tolerate?

Literature:

• Trivial Rate o
$$(\frac{1}{\sqrt{n}})$$
 - No s works.

• First-Order Orthogonal Rate $o(n^{-\frac{1}{4}})$: $s = o(\frac{n^{\frac{1}{2}}}{\log p})$ works.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

Theorem

Suppose that

- $\mathbb{E}[\eta^3] \neq 0$
- X has i.i.d. mean-zero standard Gaussian entries,
- ϵ, η are almost surely bounded by the known value C,
- and $\theta_0 \in [-M, M]$ for known M.

lf

$$s = o\left(\frac{n^{2/3}}{\log p}\right),$$

and in the first stage of estimation we use LASSO with $\lambda_n = 2CM\sqrt{3\log(p)/n}$ then, using the 2-orthogonal moments m for r=2 the solutions of Stage 2 equation is \sqrt{n} -a.n. estimator of θ_0 .

< □ > < □ > < □ > < □ > < □ > < □ >

Experiments 1: Fixed Sparsity

We consider s = 100, n = 5000, p = 1000, $\theta_0 = 3$.

Figure: Histogram for First Order Orthogonal.

Figure: Histogram for Second Order Orthogonal.

・ 何 ト ・ ヨ ト ・ ヨ ト

First Order Orthogonal: Bias Order of Magnitude Bigger than Variance!

Experiments 2: Varying Sparsity

We consider n = 5000, p = 1000, $\theta_0 = 3$.

Figure: 1st vs 2nd Order Orthogonal: BIAS, STD, MSE, Stage 1 \mathcal{L}_2 -error.

< □ > < 同 > < 回 > < 回 > < 回 >

Experiments 3: MSE for Varying n, p, s

Figure: n=2000,p=2000 Figure: n=2000,p=5000 Figure: n=5000,p=1000

イロト イポト イヨト イヨト

э

- We introduced the notion of k-orthogonality for GMM. Suffices to have $n^{-\frac{1}{2k+2}}$ first stage error for them to work. [Come to Poster for the general result!]
- We established that non-normality of $\eta | X$ is sufficient and necessary for the existence of useful 2-orthogonal moments for PLR.
- We used 2-orthogonal moment to tolerate $o(\frac{n^{\frac{2}{3}}}{\log p})$ sparsity, much larger than state-of-art tolerance.
- We made synthetic experiments that support our claims.

<日

<</p>

- How fundamental is the impossibility result when $\eta | X$ is normally distributed? Can we establish a general lower bound?
- How fundamental is the sparsity $o(\frac{n^2}{\log p})$ barrier?
- Can we construct useful higher orthogonal moments for PLR?

ヘロト 人間 ト 人 回 ト 人 回 トー

- How fundamental is the impossibility result when $\eta | X$ is normally distributed? Can we establish a general lower bound?
- How fundamental is the sparsity $o(\frac{n^2}{\log p})$ barrier?
- Can we construct useful higher orthogonal moments for PLR?

Thank you!!