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Introduction

Main Application: Pricing a product in the digital economy!

Simple: Plot Demand and Price and run Linear Regression:
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Introduction

Challenge: What if the bottom points are from the Summer and upper
from the Winter? Then new Linear Regression:

In current reality, thousands of confounders like seasonality simultaneously
affect price and demand; How do we price correctly?
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The Partially Linear Regression Problem (PLR)

Definition (Partially Linear Regression (PLR))

Let p ∈ N, θ0 ∈ R, f0, g0 : Rp → R.

• T ∈ R treatment or policy applied [e.g. price],

• Y ∈ R outcome of interest [e.g. demand],

• X ∈ Rp vector of associated covariates [e.g. seasonality..].

Related by

Y = θ0T + f0(X) + ε, E[ε | X, T] = 0 a.s.

T = g0(X) + η, E[η | X] = 0 a.s., Var (η) > 0,

where η, ε represent noise variables.

Goal: Given n iid samples of (Yi, Ti, Xi), i = 1, .., n find a
√

n-consistent
asymptotically normal (

√
n-a.n.) estimator of θ0;

√
n(θ̂0 – θ0)→ N(0,σ2).
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PLR: Challenges and Main Question

Hence, n samples for learning θ0, but ...

Challenge 1: Except θ0 we also need to learn f0, g0!

Challenge 2: And we do not really want to spend too many samples
learning them (more than necessary to estimate θ0!)

Main Question: What is the optimal learning rate of the nuisance
functions f0, g0* so that we get a

√
n-a.n. estimator of θ0?

*Maximum an so that ‖f̂0 – f0‖, ‖ĝ0 – g0‖ = o(an) suffices.
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Literature Review

• Trivial Rate, learn f0, g0 at n–
1
2 -rate.

• [Chernozhukov et al, 2017]: It suffices to learn f0, g0 at n–
1
4 -rate to

constuct a
√

n-a.n. estimator of θ0.

The technique is based on
I Generalized Method of Moments (Z-estimation)
I with a “First Order Orthogonal Moment”.
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Z-Estimation for PLR

Choose m such that E [m(Y, T, f0(X), g0(X), θ0)|X] = 0, a.s..

Given n samples Zi = (Xi, Ti, Yi),

• (Stage 1) Use Zn+1, . . . , Z2n samples to form f̂0, ĝ0 ∼ f0, g0.

• (Stage 2) Use Z1, . . . , Zn to find θ̂0 by solving

1

n

n∑
t=1

m(Tt, Yt, f̂0(Xt), ĝ0(Xt), θ̂0) = 0.

[Chernozhukov et al, 2017] suggests a simple first-order orthogonal
moment

m(Y, T, f(X), g(X), θ) = (Y – θT – f(X)) (T – g(X))

for PLR. For this choice n–
1
4 first stage error suffices!
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Z-Estimation for PLR: Comments

Definition (First-Order Orthogonality)

A moment m : Rp → R is first-order orthogonal with respect to the
nuisance function if

E
[
∇γm(Y, T, γ, θ0)|γ=(f0(X),g0(X))

|X
]

= 0.

Intuition: Low sensitivity to first stage errors because of Taylor Expansion!

Question 1: Can we generalize to higher order orthogonality? Will this
improve the first stage error we can tolerate?

Question 2: Does higher order orthogonal moments exist for PLR?
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Definition: Higher-Order Orthogonality

Let k ∈ N.

Definition (k-Orthogonal Moment)

The moment condition is called k-orthogonal, if for any α ∈ N2 with
α1 + α2 ≤ k:

E [Dαm(Y, T, f0(X), g0(X), θ0)|X] = 0.

where
Dα = ∇α1

γ1∇
α2
γ2

and γi’s are the coordinates of the nuisance f0, g0.
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Main Result on k-Orthogonality: n– 1
2k+2 rate suffices!

Theorem (informal)

Let m be a moment which is k-orthogonal and satisfies certain
identifiability and smoothness assumptions. Then if the Stage 1 error of
estimating f0, g0 is

o(n–
1

2k+2 ),

the solution to the Stage 2 equation θ̂0 is a
√

n-a.n. estimator of θ0.

Comments:

• The existence of a smooth k-orthogonal moment implies n–
1

2k+2

nuisance error suffices!

• The proof is based on a careful higher-order Taylor Expansion
argument.

• The original Theorem deals with a much more general case of GMM
than PLR (Come to Poster for details!)
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2-orthogonal moment for PLR: A Gaussianity Issue

Question: Can we construct a 2-orthogonal moment for PLR?

Gist of the Result:
Yes if and only if the treatment residual η|X is not normally distributed!
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2-orthogonal moment for PLR? Limitations!

Limitation: No if η|X is normally distributed!

Theorem (informal)

Assume η|X is normally distributed. Then there is no m which is

• 2-orthogonal

• satisfies certain identifiability and smoothness assumptions and,

• the solution of Stage 2 satisfies θ̂0 – θ0 = OP( 1√
n

).

The proof is based on Stein’s Lemma: E[q′(Z)] = E[Zq(Z)] for
Z ∼ N(0, 1), which allows us to connect algebraicelly 2-orthogonality
with the assymptotic variance of θ̂0!
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2-orthogonal moment for PLR? Power!

Power: Yes if η|X is not normally distributed!

Technical Detail before Theorem: We need to change nuisance from f0, g0
to q0 = θ0g0 + f0, g0 for our positive result.

Theorem

Under the PLR model, suppose that we know E[ηr|X],E[ηr–1|X] and that
E[ηr+1] 6= rE[E[η2|X]E[ηr–1|X]] for some r ∈ N, so that η|X is not a.s.
Gaussian. Then the moments

m (X, Y, T, θ, q(X), g(X))

:= (Y – q(X) – θ (T – g(X)))

×
(

(T – g(X))r – E[ηr|X] – r (T – g(X))E[ηr–1|X]
)

are 2-orthogonal and satisfy identifiability and smoothness assumptions.
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2-orthogonal moment for PLR? Power (comments)

Comments:

(1) 2-orthogonal moment exist under non-Gaussianity of η|X!

(2) Non-Gaussianity is standard in pricing (random discounts of a baseline
price)

(3) Proof: Reverse Engineer The Limitation Theorem.

(4) More general result in the paper without knowning the conditional
moments.
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PLR with High Dimensional Linear Nuisance Functions

Suppose f0(X) =< X,β0 >, g0(X) =< X, γ0 > for s-sparse β0, γ0 ∈ Rp.

How high sparsity can we tolerate with the suggested methods?
(Stage 1 Error ⇔ Bounds on sparsity)

LASSO can learn s-sparse linear f0, g0 with error
√

s log p
n . How does this

compare to the error we can tolerate?

Literature:

• Trivial Rate o( 1√
n

) - No s works.

• First-Order Orthogonal Rate o(n–
1
4 ): s = o( n

1
2

log p) works.
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PLR with High Dimensional Linear Nuisance Functions

Theorem

Suppose that

• E[η3] 6= 0

• X has i.i.d. mean-zero standard Gaussian entries,

• ε, η are almost surely bounded by the known value C,

• and θ0 ∈ [–M, M] for known M.

If

s = o

(
n2/3

log p

)
,

and in the first stage of estimation we use LASSO with
λn = 2CM

√
3 log(p)/n then, using the 2-orthogonal moments m for r = 2

the solutions ot Stage 2 equation is
√

n-a.n. estimator of θ0.
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Experiments 1: Fixed Sparsity

We consider s = 100, n = 5000, p = 1000, θ0 = 3.

Figure: Histogram for First
Order Orthogonal.

Figure: Histogram for Second
Order Orthogonal.

First Order Orthogonal: Bias Order of Magnitude Bigger than Variance!
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Experiments 2: Varying Sparsity

We consider n = 5000, p = 1000, θ0 = 3.

Figure: 1st vs 2nd Order Orthogonal: BIAS, STD, MSE, Stage 1 L2-error.
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Experiments 3: MSE for Varying n, p, s

Figure:
n=2000,p=2000

Figure:
n=2000,p=5000

Figure:
n=5000,p=1000
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Summary

• We introduced the notion of k-orthogonality for GMM. Suffices to

have n–
1

2k+2 first stage error for them to work. [Come to Poster for
the general result!]

• We established that non-normality of η|X is sufficient and necessary
for the existence of useful 2-orthogonal moments for PLR.

• We used 2-orthogonal moment to tolerate o( n
2
3

log p) sparsity, much
larger than state-of-art tolerance.

• We made synthetic experiments that support our claims.
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Future Work

• How fundamental is the impossibility result when η|X is normally
distributed? Can we establish a general lower bound?

• How fundamental is the sparsity o( n
2
3

log p) barrier?

• Can we construct useful higher orthogonal moments for PLR?

Thank you!!
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