Motivation

The increased availability of large and complex observational datasets motivates the study of treatment effects in the presence of high-dimensional data. As a running application, consider demand estimation from pricing and purchase data in the digital economy.

The Generalized Method of Moments (Main Tool)

Setup: For some unknown target parameter $\theta_0 \in \mathbb{R}^d$ we are given access to independent replicates $(Z_t)_{t=1}^{2n}$ of a random data vector $Z \in \mathbb{R}^{\rho}$ drawn from a distribution satisfying d moment conditions,

 $\mathbb{E}[m(Z, \theta_0, h_0(X))|X] = 0$, a.s.

Here, $h_0: \mathbb{R}^{\mu} \to \mathbb{R}^{\ell}$ is a vector of ℓ unknown nuisance functions, $X \in \mathbb{R}^{\mu}$ is a sub-vector of the observed data vector Z, and $m: \mathbb{R}^{\rho} \times \mathbb{R}^{d} \times \mathbb{R}^{\ell} \to \mathbb{R}^{d}$ is a vector of d known moment functions.

Question: Can we find a \sqrt{n} -consistent and asymptotically normal (\sqrt{n} -a.n) estimator of θ_0 , that is, an estimate $\hat{\theta}$ satisfying $\sqrt{n} \left(\hat{\theta} - \theta_0 \right) \rightarrow_d N(0, \Sigma)$ for some covariance matrix Σ ?

Sample Splitting and Two-stage Estimation

We conduct a two-stage estimation procedure with sample splitting, following [1].

- 1. First stage. Form an estimate \hat{h} of h_0 using $(Z_t)_{t=n+1}^{2n}$ (e.g., by running a non-parametric or high-dimensional regression procedure).
- 2. Second stage. Compute a Z-estimate $\hat{\theta}$ of θ_0 using an empirical version of the moment conditions (1) and h as a plug-in estimate of h_0 :

$$\hat{\theta}$$
 solves $: \frac{1}{n} \sum_{t=1}^{n} m(Z_t, \hat{\theta}, \hat{h}(X_t)) = 0.$

Main Question: How accurately do we need to learn the nuisance functions h_0 in the first stage, so that the solution of (2) is a \sqrt{n} -a.n estimator of θ_0 ? [Ideally, it would suffice to estimate h_0 at a slower than $o\left(n^{-\frac{1}{2}}\right)$ rate!]

Prior Work: Neyman Orthogonality

Definition 1 (First-Order Orthogonality) A vector of moments $m : \mathbb{R}^{\rho} \times \mathbb{R}^{d} \times \mathbb{R}^{\ell} \to \mathbb{R}^{d}$ is first-order orthogonal with respect to the nuisance function if:

$$\mathbb{E}\left[\nabla_{\gamma} m(Z, \theta_0, \gamma)|_{\gamma = h_0(X)} |X\right] = 0.$$

Here, $\nabla_{\gamma}m(Z,\theta_0,\gamma)$ is the gradient of the vector of moments with respect to its final ℓ arguments.

Theorem 1 ([1]) Suppose that

- *m* is a "smooth" enough function
- *m* satisfies the first-order orthogonality condition

• $\mathbb{E}[m(Z, \theta, h_0(X))] \neq 0$, when $\theta \neq \theta_0$ Identifiability constraint!

Then if we can the learn each function $h_{0,i}(X), i = 1, 2, ..., \ell$ at rate $o(n^{-\frac{1}{4}})$, the $\hat{\theta}$ defined by (2) is a \sqrt{n} -a.n. estimator of θ_0 .

Main Result and k-th-Order Orthogonality

Idea: Generalize orthogonality to k-th-order derivatives to accommodate $o\left(n^{-\frac{1}{2(k+1)}}\right)$ firststage estimation rates!

Orthogonal Machine Learning: Power and Limitations

Lester Mackey Vasilis Syrgkanis

Microsoft Research New England (MSR) & Massachusetts Institute of Technology (MIT)

Definition 2 (k-Orthogonality of Moments) A vector of moments $m : \mathbb{R}^{\rho} \times \mathbb{R}^{d} \times \mathbb{R}^{\ell} \to \mathbb{R}^{d}$ is called k-orthogonal if for any $\alpha \in \mathbb{N}^{\ell}$ with $\|\alpha\|_1 \leq k$:

 $\mathbb{E}\left[D^{\alpha}m(Z,\theta_0,\gamma)|_{\gamma=h_0(X)}\middle|X]=0$

where

 $D^{\alpha}m(Z,\theta,\gamma) := \nabla_{\gamma_1}^{\alpha_1} \nabla_{\gamma_2}^{\alpha_2} \dots \nabla_{\gamma_\ell}^{\alpha_\ell} m(Z,\theta,\gamma).$

Theorem 2 (Main Result) Suppose that

- *m* is a "smooth" enough function
- m satisfies the k-th-order orthogonality condition*
- $\mathbb{E}[m(Z, \theta, h_0(X))] \neq 0$, when $\theta \neq \theta_0$ Identifiability constraint!

Then if we can the learn each function $h_{0,i}(X), i = 1, 2, ..., \ell$ at a $o\left(n^{-\frac{1}{2(k+1)}}\right)$ rate, the $\hat{\theta}$ defined by (2) is a \sqrt{n} -a.n. estimator of θ_0 .

*A more general version of the theorem dealing with a weaker condition than k-th-order orthogonality can be found in the paper.

The Partially Linear Regression (PLR) Model

A good model for the pricing application!

Definition 3 (Partially Linear Regression (PLR)) In the partially linear regression model of observations Z = (T, Y, X), $T \in \mathbb{R}$ represents a treatment or policy applied, $Y \in \mathbb{R}$ represents an outcome of interest, and $X \in \mathbb{R}^p$ is a vector of associated covariates. These observations are related via the equations

$$Y = \theta_0 T + f_0(X) + \epsilon, \quad \mathbb{E}[\epsilon \mid X] = 0$$
$$T = g_0(X) + \eta, \quad \mathbb{E}[\eta \mid X] = 0$$

where ϵ, η represent unobserved noise variables.

Question: Can we accommodate a slower rate than $o(n^{-\frac{1}{2}})$ in the first stage and still be \sqrt{n} -a.n. in estimating θ_0 via (2)?

Literature: Yes! For nuisance $q_0(X) := f_0(X) + \theta_0 g_0(X), g_0(X), o(n^{-\frac{1}{4}})$ first stage error suffices: Theorem 1 works for

 $m(Z, \theta_0, q(X), g(X)) = (Y - q(X) - \theta_0 (T - g(X))) (T - g(X)) [= \epsilon \eta].$

Main Result on PLR: We can improve our first stage error requirement using secondorder orthogonality if and only if the distribution of η , conditional on X, is **not** Gaussian! Impossibility result:

Theorem 3 (Gaussian Limitation) Suppose η , conditional on X, follows a Gaussian distribution. There is no 2-orthogonal moment condition m the random variable $\hat{\theta}$, defined by (2), which satisfies the identifiability constraint and $|\hat{\theta} - \theta_0| = O_P(n^{-\frac{1}{2}})$.

The result is based on the **Stein's lemma**: for ζ mean-zero Gaussian and f differentiable, $\mathbb{E}[\zeta^2]\mathbb{E}[f'(\zeta)] = \mathbb{E}[\zeta f(\zeta)]$, which **uniquely characterizes** the Gaussian distribution.

Positive result:

Theorem 4 (Non-Gaussian Power) Suppose for some $r \in \mathbb{N}$, $\mathbb{E}[\eta^r | X]$ is known* and $\mathbb{E}[\eta^{r+1}|X] \neq r\mathbb{E}[\eta^2|X]\mathbb{E}[\eta^{r-1}|X]$ (so that $\eta|X$ does not follow a Gaussian distribution). Then the moment condition

 $m\left(T, Y, \theta, q(X), g(X), \mathbb{E}[\eta^{r-1}|X]\right) :=$ $(Y - q(X) - \theta (T - g(X))) \left((T - g(X))^r - \mathbb{E}[\eta^r] \right)$

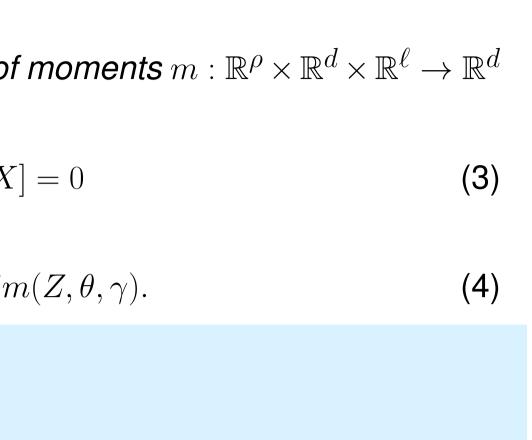
is 2-orthogonal and satisfies the assumptions of Theorem 2. Hence, the random variable $\hat{\theta}$, defined by (2), is a \sqrt{n} -a.n. estimator of θ_0 .

*Exact knowledge is not necessary; it suffices to estimat

(1)

(2)

Ilias Zadik



[X,T] = 0

$$X] - r\left(T - g(X)\right) \mathbb{E}[\eta^{r-1}|X]\right)$$

te
$$\mathbb{E}[\eta^r|X]$$
 at a $o\left(n^{-rac{1}{3}}
ight)$ rate.

Application to High-Dimensional Linear Regression

 $f_0(X) = \langle X, \beta \rangle, g_0(X) = \langle X, \gamma \rangle$ for some s-sparse $\beta, \gamma \in \mathbb{R}^p$. Theorem 1 works when $s = o\left(\frac{\sqrt{n}}{\log p}\right)$ [1], while Theorem 4 works for $s = o\left(\frac{n^2}{\log p}\right)$!

Theorem 5 Suppose

- ϵ, η are independent of X, T and almost surely bounded by a constant C > 0,
- $\mathbb{E}[\eta^3] \neq 0$ or $\mathbb{E}[\eta^4] \neq 3\mathbb{E}[\eta^2]$, Suffices for non-Gaussianity!
- $\theta_0 \in [-M, M]$ for some M > 0, and

• X has iid standard Gaussian entries. Then if

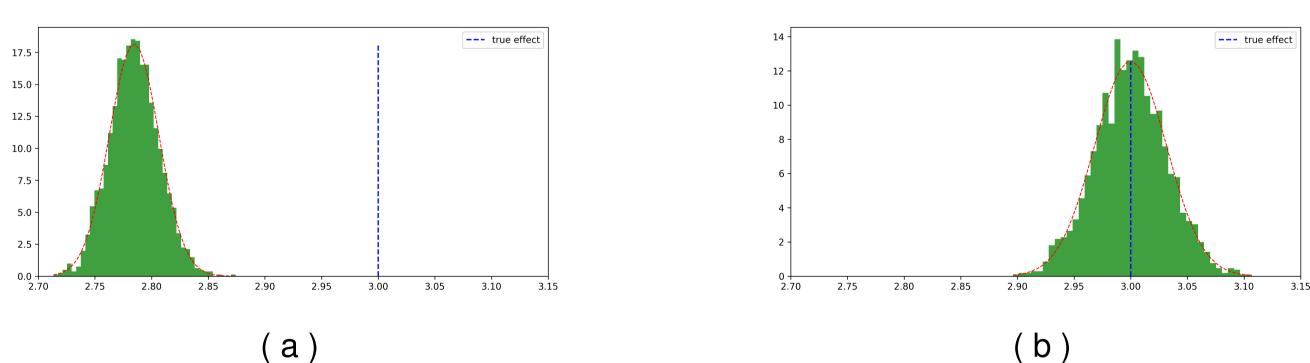
and in the first stage estimation

- respectively.
- and $\mathbb{E}[\eta^3]$, where $\mu^{(2)} = \frac{1}{n} \sum_{t=1}^n (T'_t \langle X'_t, \hat{\gamma} \rangle)^2$ and

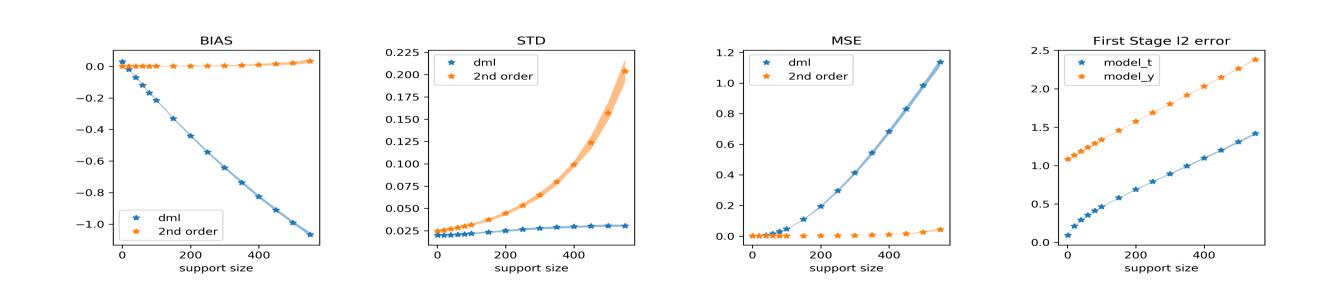
$$\mu^{(3)} = \frac{1}{n} \sum_{t=1}^{n} (T'_t - \langle X'_t, \hat{\gamma} \rangle)^3 - 3\frac{1}{n} \sum_{t=1}^{n} (T'_t - \langle X'_t, \hat{\gamma} \rangle) \mu^{(2)}$$

for $(T'_t, X'_t)_{t=1}^n$ an i.i.d. sample independent of $\hat{\gamma}$.

Experiments: First order orthogonal vs Second order orthogonal



100 Monte Carlo experiments, $\theta_0 = 3$ and p = 1000, n = 5000, s = 100.



100 Monte Carlo experiments, where $\theta_0 = 3$ and p = 1000, n = 5000 with varying sparsity.

Bibliography

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey. Double/Debiased/Neyman Machine Learning of Treatment Effects. American Economic Review, 2017.

$$o\left(n^{\frac{2}{3}}/\log p\right),$$

(a) We create estimators $\hat{q}, \hat{\gamma}$ of $q := \theta_0 \gamma + \beta, \gamma$ via LASSO by regressing Y, X and T, X

(b) Based on a split sample and our estimator $\hat{\gamma}$ of γ , we use $\mu^{(2)}$ and $\mu^{(3)}$ to estimate $\mathbb{E}[\eta^2]$

Then, using the moments of Theorem 4, the $\hat{\theta}$ defined by (2) is a \sqrt{n} -a.n. estimator of θ_0 .

