Orthogonal Machine Learning: Power and Limitations
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Motivation

The increased availability of large and complex observational datasets motivates the study
of treatment effects in the presence of high-dimensional data. As a running application,
consider demand estimation from pricing and purchase data in the digital economy.

The Generalized Method of Moments (Main Tool)

Setup: For some unknown target parameter 6, € R? we are given access to independent
replicates (Ztﬁgl of a random data vector Z € R” drawn from a distribution satisfying d
moment conditions,

E[m(Z, 90, ho(X)>|X] =0, a.s. (1)

Here, hy : R — R is a vector of ¢ unknown nuisance functions, X € R* is a sub-vector
of the observed data vector Z, and m : R”? x R? x RY — R%is a vector of d known moment
functions.

Question: Can we find a \/n-consistent and asymptotically normal (1/n-a.n) estimator of
Ay, that is, an estimate 0 satisfying \/n (é — 90) —4 N (0, 33) for some covariance matrix 7

Sample Splitting and Two-stage Estimation

We conduct a two-stage estimation procedure with sample splitting, following [1].

1. First stage. Form an estimate & of i using (Zt),?gn+1 (e.g., by running a non-parametric
or high-dimensional regression procedure).

2. Second stage. Compute a Z-estimate f of 6, using an empirical version of the moment
conditions (1) and h as a plug-in estimate of A:

. 1< o
9 sol - 1.0 h(X+)) =0. 2
solves n;m( t,0,h(Xy)) (2)

Main Question: How accurately do we need to learn the nuisance functions hg in the first
stage, so that the solution of (2) is a y/n-a.n estimator of 6,7 [ldeally, it would suffice to

estimate h( at a slower than o (n_%) rate!]

Prior Work: Neyman Orthogonality

Definition 1 (First-Order Orthogonality) A vector of moments m : R? x R% x Rt — R? js
first-order orthogonal with respect to the nuisance function if:

E [ Vm(Z, 00, 7)) X | =0

Here, V. m(Z,0y,v) is the gradient of the vector of moments with respect to its final ¢
arguments.

Theorem 1 ([1]) Suppose that

e m IS & “smooth” enough function

e m satisfies the first-order orthogonality condition

e Eim(Z, 0, ho(X))] # 0, when 0 #+ 60, Identifiability constraint!

Then if we can the learn each function hg ;(X),i =1,2,...,( at rate o (n_i), the 6 defined
by (2) is a \/n-a.n. estimator of 0.

Main Result and £-th-Order Orthogonality

1
Idea: Generalize orthogonality to k-th-order derivatives to accommodate o (n 2<k+1>) first-
stage estimation rates!

lesearch New England (MSKE

Lester Mackey Vasilis Syrgkanis llias Zadik

Definition 2 (k-Orthogonality of Moments) A vector of moments m : R” x R% x Rf — R¢
is called k-orthogonal if for any o € Nt with |||} < k:

E | D%m(Z, 00, 7)|y=p,(x)| X] =0 (3)

where
Dm(Z,0,v) = V3IViz.. . ViIm(Z,0,). (4)
Theorem 2 (Main Result) Suppose that
e m IS a “smooth” enough function
e m satisfies the k-th-order orthogonality condition*
e Em(Z,0,hy(X))] # 0, when 6 +# 6, Identifiability constraint!

1

Then if we can the learn each function h ;(X),i = 1,2,...,f atao (n 2<k+1>) rate, the 0
defined by (2) is a \/n-a.n. estimator of .

*A more general version of the theorem dealing with a weaker condition than k-th-order
orthogonality can be found in the paper.

The Partially Linear Regression (PLR) Model

A good model for the pricing application!

Definition 3 (Partially Linear Regression (PLR))
In the partially linear regression model of observations Z = (T,Y, X), T € R represents
a treatment or policy applied, Y € R represents an outcome of interest, and X € RP is a
vector of associated covariates. These observations are related via the equations

Y =0T + fo(X)+e, Ele| X, T]=0

T=go(X)+n, E|X=0

where €, n represent unobserved noise variables.

Question: Can we accommodate a slower rate than o (n_%) In the first stage and still be
v/n-a.n. in estimating 6, via (2)?

Literature: Yes! For nuisance ¢y(X) = fo(X) + 0pgo(X), go(X), o (n‘i> first stage error
suffices; Theorem 1 works for

m(Z,00,q(X), 9(X)) = (Y — q(X) = by (T — g(X))) (T — g(X)) [= en].

Main Result on PLR: We can improve our first stage error requirement using second-
order orthogonality if and only if the distribution of n, conditional on X, is not Gaussian!

Impossibility result:

Theorem 3 (Gaussian Limitation) Suppose 7, conditional on X, follows a Gaussian dis-
tribution. There is no 2-orthogonal moment condition m the random variable 0, defined by

(2), which satisfies the identifiability constraint and |0 — 6| = O p(n_%).

The result is based on the Stein’s lemma: for ( mean-zero Gaussian and f differentiable,
E[CYIE[f(¢)] = E[¢£(¢)], which uniquely characterizes the Gaussian distribution.

Positive result:

Theorem 4 (Non-Gaussian Power) Suppose for some r € N, E|n"|X] is known* and
E[n" 1 X] # rE[n?| X]E[R"~1| X] (so that n| X does not follow a Gaussian distribution). Then

the moment condition
m (T, Y, 8,¢(X), g(X), EW“—HX]) -
(Y = q(X) = (T = g(X))) (T = g(X))" = Bly"|X] = r (T = g(X)) Elyy | x])

Is 2-orthogonal and satisfies the assumptions of Theorem 2. Hence, the random variable

0, defined by (2), is a /n-a.n. estimator of 6.

*Exact knowledge is not necessary; it suffices to estimate E[n"| X | ata o (n_%) rate.
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Application to High-Dimensional Linear Regression

fo(X) = (X, 8), 90(X) = (X, v) for some s-sparse 3,7 € R.

2
Theorem 1 works when s = o (%) [1], while Theorem 4 works for s = o <%) !

Theorem 5 Suppose
e c.n) are independent of X, T" and almost surely bounded by a constant C' > 0,

o E[°] # 0 or Eli*] # 3E[n7],
Suffices for non-Gaussianity!

e 0y € [—M, M] for some M > 0, and
e X has iid standard Gaussian entries.
Then if :
S=0 (nﬁ/logp) ,
and in the first stage estimation

(a) We create estimators q,~ of q := 0yy + 3,y via LASSO by regressing Y, X and T, X
respectively.

(b) Based on a split sample and our estimator 4 of v, we use 2 and '3 to estimate E[r?]
and E[r’], where u?) = LS (1] — (X],4))? and

n n

Z(Tt/ — (X},4))° - 3%Z(Tt’ — (X, % )2

1
y® -1
n

for (T}, X})}"_, an i.i.d. sample independent of 4.
Then, using the moments of Theorem 4, the § defined by (2) is a \/n-a.n. estimator of 6.

Experiments: First order orthogonal vs Second order
orthogonal

(a) (b)

100 Monte Carlo experiments, 6, = 3 and p = 1000, n = 5000, s = 100.

BIAS STD MSE First Stage |12 error
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support size support size support size support size

100 Monte Carlo experiments, where 6, = 3 and p = 1000, n = 5000 with varying sparsity.
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