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Motivation
The increased availability of large and complex observational datasets motivates the study
of treatment effects in the presence of high-dimensional data. As a running application,
consider demand estimation from pricing and purchase data in the digital economy.

The Generalized Method of Moments (Main Tool)
Setup: For some unknown target parameter θ0 ∈ Rd we are given access to independent
replicates (Zt)

2n
t=1 of a random data vector Z ∈ Rρ drawn from a distribution satisfying d

moment conditions,
E[m(Z, θ0, h0(X))|X ] = 0, a.s. (1)

Here, h0 : Rµ → R` is a vector of ` unknown nuisance functions, X ∈ Rµ is a sub-vector
of the observed data vector Z, and m : Rρ×Rd×R`→ Rd is a vector of d known moment
functions.

Question: Can we find a
√
n-consistent and asymptotically normal (

√
n-a.n) estimator of

θ0, that is, an estimate θ̂ satisfying
√
n
(
θ̂ − θ0

)
→d N(0,Σ) for some covariance matrix Σ?

Sample Splitting and Two-stage Estimation
We conduct a two-stage estimation procedure with sample splitting, following [1].

1. First stage. Form an estimate ĥ of h0 using (Zt)
2n
t=n+1 (e.g., by running a non-parametric

or high-dimensional regression procedure).

2. Second stage. Compute a Z-estimate θ̂ of θ0 using an empirical version of the moment
conditions (1) and ĥ as a plug-in estimate of h0:

θ̂ solves :
1

n

n∑
t=1

m(Zt, θ̂, ĥ(Xt)) = 0. (2)

Main Question: How accurately do we need to learn the nuisance functions h0 in the first
stage, so that the solution of (2) is a

√
n-a.n estimator of θ0? [Ideally, it would suffice to

estimate h0 at a slower than o
(
n−

1
2

)
rate!]

Prior Work: Neyman Orthogonality

Definition 1 (First-Order Orthogonality) A vector of moments m : Rρ × Rd × R`→ Rd is
first-order orthogonal with respect to the nuisance function if:

E
[
∇γm(Z, θ0, γ)|γ=h0(X)|X

]
= 0.

Here, ∇γm(Z, θ0, γ) is the gradient of the vector of moments with respect to its final `
arguments.

Theorem 1 ([1]) Suppose that
•m is a “smooth” enough function
•m satisfies the first-order orthogonality condition
• E[m(Z, θ, h0(X))] 6= 0, when θ 6= θ0 Identifiability constraint!

Then if we can the learn each function h0,i(X), i = 1, 2, . . . , ` at rate o
(
n−

1
4

)
, the θ̂ defined

by (2) is a
√
n-a.n. estimator of θ0.

Main Result and k-th-Order Orthogonality

Idea: Generalize orthogonality to k-th-order derivatives to accommodate o
(
n
− 1

2(k+1)

)
first-

stage estimation rates!

Definition 2 (k-Orthogonality of Moments) A vector of moments m : Rρ×Rd×R`→ Rd
is called k-orthogonal if for any α ∈ N` with ‖α‖1 ≤ k:

E
[
Dαm(Z, θ0, γ)|γ=h0(X)

∣∣∣X ] = 0 (3)

where
Dαm(Z, θ, γ) := ∇α1

γ1∇
α2
γ2 . . .∇

α`
γ`m(Z, θ, γ). (4)

Theorem 2 (Main Result) Suppose that
•m is a “smooth” enough function
•m satisfies the k-th-order orthogonality condition*
• E[m(Z, θ, h0(X))] 6= 0, when θ 6= θ0 Identifiability constraint!

Then if we can the learn each function h0,i(X), i = 1, 2, . . . , ` at a o
(
n
− 1

2(k+1)

)
rate, the θ̂

defined by (2) is a
√
n-a.n. estimator of θ0.

*A more general version of the theorem dealing with a weaker condition than k-th-order
orthogonality can be found in the paper.

The Partially Linear Regression (PLR) Model
A good model for the pricing application!
Definition 3 (Partially Linear Regression (PLR))
In the partially linear regression model of observations Z = (T, Y,X), T ∈ R represents
a treatment or policy applied, Y ∈ R represents an outcome of interest, and X ∈ Rp is a
vector of associated covariates. These observations are related via the equations

Y = θ0T + f0(X) + ε, E[ε | X,T ] = 0

T = g0(X) + η, E[η | X ] = 0

where ε, η represent unobserved noise variables.

Question: Can we accommodate a slower rate than o
(
n−

1
2

)
in the first stage and still be

√
n-a.n. in estimating θ0 via (2)?

Literature: Yes! For nuisance q0(X) := f0(X) + θ0g0(X), g0(X), o
(
n−

1
4

)
first stage error

suffices; Theorem 1 works for

m(Z, θ0, q(X), g(X)) = (Y − q(X)− θ0 (T − g(X))) (T − g(X)) [= εη] .

Main Result on PLR: We can improve our first stage error requirement using second-
order orthogonality if and only if the distribution of η, conditional on X, is not Gaussian!

Impossibility result:

Theorem 3 (Gaussian Limitation) Suppose η, conditional on X, follows a Gaussian dis-
tribution. There is no 2-orthogonal moment condition m the random variable θ̂, defined by
(2), which satisfies the identifiability constraint and |θ̂ − θ0| = OP (n−

1
2).

The result is based on the Stein’s lemma: for ζ mean-zero Gaussian and f differentiable,
E[ζ2]E[f ′(ζ)] = E[ζf (ζ)], which uniquely characterizes the Gaussian distribution.

Positive result:

Theorem 4 (Non-Gaussian Power) Suppose for some r ∈ N, E[ηr|X ] is known* and
E[ηr+1|X ] 6= rE[η2|X ]E[ηr−1|X ] (so that η|X does not follow a Gaussian distribution). Then
the moment condition

m
(
T, Y, θ, q(X), g(X),E[ηr−1|X ]

)
:=

(Y − q(X)− θ (T − g(X)))
(

(T − g(X))r − E[ηr|X ]− r (T − g(X))E[ηr−1|X ]
)

is 2-orthogonal and satisfies the assumptions of Theorem 2. Hence, the random variable
θ̂, defined by (2), is a

√
n-a.n. estimator of θ0.

*Exact knowledge is not necessary; it suffices to estimate E[ηr|X ] at a o
(
n−

1
3

)
rate.

Application to High-Dimensional Linear Regression
f0(X) = 〈X, β〉 , g0(X) = 〈X, γ〉 for some s-sparse β, γ ∈ Rp.

Theorem 1 works when s = o
( √

n
log p

)
[1], while Theorem 4 works for s = o

(
n
2
3

log p

)
!

Theorem 5 Suppose
• ε, η are independent of X,T and almost surely bounded by a constant C > 0,
• E[η3] 6= 0 or E[η4] 6= 3E[η2],

Suffices for non-Gaussianity!
• θ0 ∈ [−M,M ] for some M > 0, and
•X has iid standard Gaussian entries.

Then if
s = o

(
n

2
3/ log p

)
,

and in the first stage estimation
(a) We create estimators q̂, γ̂ of q := θ0γ + β, γ via LASSO by regressing Y,X and T,X

respectively.
(b) Based on a split sample and our estimator γ̂ of γ, we use µ(2) and µ(3) to estimate E[η2]

and E[η3], where µ(2) = 1
n

∑n
t=1(T ′t −

〈
X ′t, γ̂

〉
)2 and

µ(3) =
1

n

n∑
t=1

(T ′t −
〈
X ′t, γ̂

〉
)3 − 3

1

n

n∑
t=1

(T ′t −
〈
X ′t, γ̂

〉
)µ(2)

for (T ′t , X
′
t)
n
t=1 an i.i.d. sample independent of γ̂.

Then, using the moments of Theorem 4, the θ̂ defined by (2) is a
√
n-a.n. estimator of θ0.

Experiments: First order orthogonal vs Second order
orthogonal

( a ) ( b )

100 Monte Carlo experiments, θ0 = 3 and p = 1000, n = 5000, s = 100.

100 Monte Carlo experiments, where θ0 = 3 and p = 1000, n = 5000 with varying sparsity.
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