The All-or-Nothing Phenomenon in Sparse Linear Regression

Ilias Zadik^{1,2}, joint work with Galen Reeves³, Jiaming Xu³

 $^1\mathrm{Massachusetts}$ Institute of Technology \rightarrow 2 New York University, $^3\mathrm{Duke}$ University

32th Conference on Learning Theory (COLT), 2019

< 同 ト < 三 ト < 三 ト

Model: Sparse Linear Regression

For

- (unknown) vector $\beta \in \mathbb{R}^p$, with $\beta \sim \text{Unif}\{v \in \{0, 1\}^p : \|v\|_0 = k\}$
- data matrix $X \in \mathbb{R}^{n \times p}$ with i.i.d. $\mathcal{N}(0, 1)$ entries
- noise $W \in \mathbb{R}^n$ with i.i.d. $\mathcal{N}(0, \sigma^2)$ entries

observe n noisy linear samples of β ,

$$\mathsf{Y} = \mathsf{X}\beta + \mathsf{W}.$$

Goal: Minimum $n = n(p, k, \sigma^2)$ so that β can be **recovered** by (Y, X).

[GV'02], [AS+'10], [RP' 16], [BD+ '16], [SC' 17], [GZ' 17].

Model: Sparse Linear Regression

For

- (unknown) vector $\beta \in \mathbb{R}^p$, with $\beta \sim \text{Unif}\{v \in \{0, 1\}^p : \|v\|_0 = k\}$
- data matrix $X \in \mathbb{R}^{n \times p}$ with i.i.d. $\mathcal{N}(0, 1)$ entries
- noise $W \in \mathbb{R}^n$ with i.i.d. $\mathcal{N}(0, \sigma^2)$ entries

observe n noisy linear samples of β ,

$$\mathsf{Y} = \mathsf{X}\beta + \mathsf{W}.$$

Goal: Minimum $n = n(p, k, \sigma^2)$ so that β can be **recovered** by (Y, X).

$$\mathsf{MMSE} = \min_{\hat{\beta} = \hat{\beta}(\mathsf{Y},\mathsf{X})} \frac{1}{\mathsf{k}} \mathbb{E} \left[\| \hat{\beta} - \beta \|_{2}^{2} \right] \in [0, 1]$$

[GV'02], [AS+'10], [RP' 16], [BD+ '16], [SC' 17], [GZ' 17].

Model: Sparse Linear Regression

For

- (unknown) vector $\beta \in \mathbb{R}^p$, with $\beta \sim \text{Unif}\{v \in \{0, 1\}^p : \|v\|_0 = k\}$
- data matrix $X \in \mathbb{R}^{n \times p}$ with i.i.d. $\mathcal{N}(0, 1)$ entries
- noise $W \in \mathbb{R}^n$ with i.i.d. $\mathcal{N}(0, \sigma^2)$ entries

observe n noisy linear samples of β ,

$$\mathsf{Y} = \mathsf{X}\beta + \mathsf{W}.$$

Goal: Minimum $n = n(p, k, \sigma^2)$ so that β can be **recovered** by (Y, X).

$$\mathsf{MMSE} = \min_{\hat{\beta} = \hat{\beta}(\mathsf{Y},\mathsf{X})} \frac{1}{\mathsf{k}} \mathbb{E} \left[\| \hat{\beta} - \beta \|_{2}^{2} \right] \in [0, 1]$$

Weak Recovery: $\limsup_{p\to+\infty} MMSE < 1$. For which n? Strong Recovery: $\lim_{p\to+\infty} MMSE = 0$. For which n? [GV'02], [AS+'10], [RP' 16], [BD+ '16], [SC' 17], [GZ' 17].

For sublinear sparsity $k \le \sqrt{p}$ and high SNR k/σ^2 , we identify a *critical sample size* $n^* = n^*(p, k, \sigma^2)$ for which: $n < n^*$ weak recovery is impossible, $n > n^*$ strong recovery is possible!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

For sublinear sparsity $k \le \sqrt{p}$ and high SNR k/σ^2 , we identify a *critical sample size* $n^* = n^*(p, k, \sigma^2)$ for which: $n < n^*$ weak recovery is impossible, $n > n^*$ strong recovery is possible!

For sublinear sparsity $k \le \sqrt{p}$ and high SNR k/σ^2 , we identify a *critical sample size* $n^* = n^*(p, k, \sigma^2)$ for which: $n < n^*$ weak recovery is impossible, $n > n^*$ strong recovery is possible!

A (10) < A (10) < A (10) </p>

For sublinear sparsity $k \le \sqrt{p}$ and high SNR k/σ^2 , we identify a *critical sample size* $n^* = n^*(p, k, \sigma^2)$ for which: $n < n^*$ weak recovery is impossible, $n > n^*$ strong recovery is possible!

All-or-Nothing: Theorem

$$\mathsf{n}^* = 2\mathsf{k}\log\left(\mathsf{p}/\mathsf{k}\right)/\log\left(\mathsf{k}/\sigma^2 + 1\right)$$

Theorem (All-or-Nothing Phenomenon)

For any $\epsilon, \delta > 0$ if $k \le p^{1/2-\delta}$ and $k/\sigma^2 \ge C(\delta, \epsilon) > 0$ then, if

- $n > (1 + \epsilon) n^*$, $\lim_p MMSE = 0$. (strong recovery possible!)
- $n < (1 \epsilon) n^*$, $\lim_p MMSE = 1$. (weak recovery impossible!)

イロト イヨト イヨト ・

All-or-Nothing: Theorem

$$\mathsf{n}^* = 2\mathsf{k}\log\left(\mathsf{p}/\mathsf{k}\right)/\log\left(\mathsf{k}/\sigma^2+1\right)$$

Theorem (All-or-Nothing Phenomenon)

For any $\epsilon, \delta > 0$ if $k \le p^{1/2-\delta}$ and $k/\sigma^2 \ge C(\delta, \epsilon) > 0$ then, if

- $n > (1 + \epsilon) n^*$, $\lim_{p} MMSE = 0$. (strong recovery possible!)
- $n < (1 \epsilon) n^*$, $\lim_{p} MMSE = 1$. (weak recovery impossible!)

Prior results for $n \ge Cn^*$ [R'11] or $n = o(n^*)$ [WW '10, ASZ'10, SC'17]. All-or-nothing (MLE) if $k < e^{\sqrt{\log p}}$ [G**Z**'17].

Negative Result for $n \leq (1 - \epsilon)n^*$: $\lim_{p} MMSE = 1$.

• Step 1: "Impossibility of Testing": Data Look Like Pure Noise.

ヘロト 人間 ト イヨト イヨト

Negative Result for $n \leq (1 - \epsilon)n^*$: $\lim_{p} MMSE = 1$.

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise. Let P the law of $(Y = X\beta + W, X)$, and Q the law of $(Y = \lambda W, X)$ for $\lambda = \sqrt{k/\sigma^2 + 1}$.

Negative Result for $n \leq (1 - \epsilon)n^*$: $\lim_{p} MMSE = 1$.

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise. Let P the law of $(Y = X\beta + W, X)$, and Q the law of $(Y = \lambda W, X)$ for $\lambda = \sqrt{k/\sigma^2 + 1}$. We show,

$$\lim_{p \to +\infty} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}||\mathsf{Q}) = 0.$$

Requires conditional second moment method.

Negative Result for $n \leq (1 - \epsilon)n^*$: $\lim_{p} MMSE = 1$.

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise. Let P the law of $(Y = X\beta + W, X)$, and Q the law of $(Y = \lambda W, X)$ for $\lambda = \sqrt{k/\sigma^2 + 1}$. We show,

$$\lim_{\mathsf{p}\to+\infty}\mathsf{D}_{\mathsf{KL}}\left(\mathsf{P}||\mathsf{Q}\right)=0.$$

Requires *conditional* second moment method.

• Step 2:

"Impossibility of Testing" implies "Impossibility of Estimation".

白 医水静 医水黄 医水黄 医二黄

Negative Result for $n \leq (1 - \epsilon)n^*$: $\lim_{p} MMSE = 1$.

• Step 1:

"Impossibility of Testing": Data Look Like Pure Noise. Let P the law of $(Y = X\beta + W, X)$, and Q the law of $(Y = \lambda W, X)$ for $\lambda = \sqrt{k/\sigma^2 + 1}$. We show,

$$\lim_{\mathbf{p}\to +\infty} \mathsf{D}_{\mathsf{KL}}\left(\mathsf{P}||\mathsf{Q}\right) = \mathsf{0}.$$

Requires conditional second moment method.

• Step 2:

"Impossibility of Testing" implies "Impossibility of Estimation". We show the general (any n, p, k and any $\beta : ||\beta||_2 = k$):

$$1-\mathsf{MMSE} \leq 2\left(1+\sigma^2/\mathsf{k}\right)\mathsf{D}_{\mathsf{KL}}\left(\mathsf{P}||\mathsf{Q}\right).$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Conclusion

All-or-Nothing Phenomenon: $k < \sqrt{p}$, high SNR

- When $n > (1 + \epsilon) n^*$, *strong* recovery is possible!
- When $n < (1 \epsilon) n^*$, weak recovery is impossible!

Come to the poster 166 for:

- Interpretation of n^{*} with Gaussian communication channel analogy n^{*} $\approx \underbrace{\log \begin{pmatrix} p \\ k \end{pmatrix}}_{\text{entropy of } \beta} / \underbrace{0.5 \log \left(k / \sigma^2 + 1 \right)}_{\text{Gaussian Channel Capacity}}$.
- Intuition from *replica-symmetric results* in the regime $k = \Theta(p)$.
- **Proof ideas** (conditional second moment method and area theorem)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion

All-or-Nothing Phenomenon: $k < \sqrt{p}$, high SNR

- When $n > (1 + \epsilon) n^*$, *strong* recovery is possible!
- When $n < (1 \epsilon) n^*$, weak recovery is impossible!

Come to the poster 166 for:

- Interpretation of n^{*} with Gaussian communication channel analogy n^{*} $\approx \underbrace{\log \begin{pmatrix} p \\ k \end{pmatrix}}_{\text{entropy of } \beta} / \underbrace{0.5 \log \left(k / \sigma^2 + 1 \right)}_{\text{Gaussian Channel Capacity}}$.
- Intuition from *replica-symmetric results* in the regime $k = \Theta(p)$.
- **Proof ideas** (conditional second moment method and area theorem)

Thank you!!